We assess the coverage properties of confidence and credible intervals on the
CMSSM parameter space inferred from a Bayesian posterior and the profile
likelihood based on an ATLAS sensitivity study. In order to make those
calculations feasible, we introduce a new method based on neural networks to
approximate the mapping between CMSSM parameters and weak-scale particle
masses. Our method reduces the computational effort needed to sample the CMSSM
parameter space by a factor of ~ 10^4 with respect to conventional techniques.
We find that both the Bayesian posterior and the profile likelihood intervals
can significantly over-cover and identify the origin of this effect to physical
boundaries in the parameter space. Finally, we point out that the effects
intrinsic to the statistical procedure are conflated with simplifications to
the likelihood functions from the experiments themselves.Comment: Further checks about accuracy of neural network approximation, fixed
typos, added refs. Main results unchanged. Matches version accepted by JHE