24 research outputs found

    Positive plant-soil feedbacks of the invasive <i>Impatiens glandulifera</i> and their effects on above-ground microbial communities

    Get PDF
    Impatiens glanduliferais one of the most widespread invasive plant species in the UK. Although aspects of its biology are known, there is little information about its association with microbial communities, both above ground and below ground. Furthermore, it is unknown whether this species exhibits any form of plant&ndash;soil feedback (PSF), commonly seen in other invasive weeds. We conducted a PSF experiment, in which plants ofI.glanduliferawere grown in soil that supported the species and compared with plants grown in a control soil from the same locality. Soil nutrients were measured, and the soil and foliar microbial communities were assessed.Impatiens glanduliferagrew larger and faster in conditioned soil compared with the control. Higher levels of phosphate were also found in conditioned soils. Arbuscular mycorrhizal fungal (AMF) colonisation was lower in conditioned soils, suggesting thatI.glanduliferamay rapidly alter AMF communities in invaded areas. PSFs had a significant effect on the foliar endophyte community, with clear separation of species between conditioned and control soils. These results show thatI.glanduliferadisplayed a positive PSF and the PSF mechanism extended beyond the soil microbial community to affect foliar endophytes. The observed increase in endophytes in plants grown in conditioned soil could enhance resistance to herbivory, thus further accentuating the invasive properties of this species

    Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana)

    Get PDF
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic E. coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analyzed. Among hundreds of compounds, only a few homologous compounds were identified that contained isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole containing analogs, sulfonamides, furanones, flavanones, and known to possess broad-spectrum antimicrobial properties, and possess anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs

    Methoden der Strassenplanung

    No full text
    None

    Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate

    No full text
    Invasive species can have far-reaching impacts on ecosystems. Invasive plants may be able to change habitat structure and quality. We conducted a field experiment to examine whether the invasive plant Impatiens glandulifera affects native terrestrial gastropods. We also evaluated whether the invasive plant alters forest soil characteristics and microclimate which in turn may influence gastropod abundance. We sampled gastropods in plots installed in patches of I. glandulifera, in plots in which I. glandulifera was regularly removed by hand, and in control plots which were not yet colonized by the invasive plant. The three types of plots were equally distributed over three mixed deciduous forest areas that were slightly, moderately or heavily affected by a wind throw 11 years ago. A total of 33 gastropod species were recorded. Gastropod species richness was not affected by delayed effects of the wind throw, but it was significantly higher in invaded plots than in uninvaded plots. Similarly, gastropod abundance was higher in invaded plots than in the two types of control plots. Canonical correspondence analysis revealed marginally significant shifts of gastropod communities between the three types of plots and indicated that soil moisture, presence of I. glandulifera and cover of woody debris affected gastropod species composition. Field measurements showed that soil moisture was higher and daily soil temperature was more damped in patches of I. glandulifera than in the native ground vegetation. The changed microclimatic conditions may favour certain gastropod species. In particular, ubiquitous species and species with a high inundation tolerance increased in abundance in plots invaded by I. glandulifera. Our field experiment demonstrated that an invasive plant can indirectly affect native organisms by changing soil characteristics and microclimate

    Effects of the annual invasive plant Impatiens glandulifera on the Collembola and Acari communities in a deciduous forest

    No full text
    Invasive plants can disturb interactions between soil organisms and native plants and thereby alter ecosystem functions and/or reduce local biodiversity. Collembola and Acari are the most abundant microarthropods in the leaf litter and soil playing a key role in the decomposition of organic material and nutrient cycling. We designed a field experiment to examine the potential effects of the annual invasive plant Impatiens glandulifera on species diversity, abundance and community composition of Collembola and Acari in leaf litter and soil in a deciduous forest in Switzerland. Leaf litter and soil samples were obtained from plots invaded by I. glandulifera since 6 years, from plots in which the invasive plant had been removed for 4 years and from plots which were not yet colonized by the invasive plant. The 45 leaf litter and soil samples were equally distributed over three forest areas, which were differently affected by a wind throw 12 years prior to sampling representing a natural gradient of disturbance. Collembola species richness and abundance in the leaf litter and soil samples were not affected by the presence of the invasive plant. However, the species composition of Collembola was altered in plots with I. glanduIllera. The abundance of leaf-litter dwelling Acari was increased in invaded plots compared to the two other plot types. Furthermore, the presence of the invasive plant shifted the composition of Acari individuals belonging to different groups. Our field experiment demonstrates that an annual invasive plant can affect microarthropods which are important for nutrient cycling in various ecosystems. (C) 2014 Elsevier GmbH. All rights reserved.Velux Foundation, Zurich [447
    corecore