591 research outputs found

    RACE-OC Project: Rotation and variability in the open cluster M11 (NGC6705)

    Full text link
    Rotation and magnetic activity are intimately linked in main-sequence stars of G or later spectral types. The presence and level of magnetic activity depend on stellar rotation, and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the rotation/activity/age connection. The open cluster M11 has been studied as a part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters), which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters with different ages. Photometric observations of the open cluster M11 were carried out in June 2004 using LOAO 1m telescope. The rotation periods of the cluster members are determined by Fourier analysis of photometric data time series. We further investigated the relations between the surface activity, characterized by the light curve amplitude, and rotation. We have discovered a total of 75 periodic variables in the M11 FoV, of which 38 are candidate cluster members. Specifically, among cluster members we discovered 6 early-type, 2 eclipsing binaries and 30 bona-fide single periodic late-type variables. Considering the rotation periods of 16 G-type members of the almost coeval 200-Myr M34 cluster, we could determine the rotation period distribution from a more numerous sample of 46 single G stars at an age of about 200-230 Myr and determine a median rotation period P=4.8d. A comparison with the younger M35 cluster (~150 Myr) and with the older M37 cluster (~550 Myr) shows that G stars rotate slower than younger M35 stars and faster than older M37 stars. The measured variation of the median rotation period is consistent with the scenario of rotational braking of main-sequence spotted stars as they age.Comment: Accepted by Astronomy and Astrophysics on Dec 15, 200

    Altruism can proliferate through group/kin selection despite high random gene flow

    Get PDF
    The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism can spread when rare under realistic group sizes and levels of migration. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton's rule for the spread of altruistic alleles, applicable under broad conditions.Comment: 5 pages, 2 figures. Supplementary material with 50 pages and 26 figure

    FOXL2 and TERT promoter mutation detection in circulating tumor DNA of adult granulosa cell tumors as biomarker for disease monitoring

    Get PDF
    OBJECTIVE: Adult granulosa cell tumors (aGCTs) represent a rare, hormonally active subtype of ovarian cancer that has a tendency to relapse late and repeatedly. Current serum hormone markers are inaccurate in reflecting tumor burden in a subset of aGCT patients, indicating the need for a novel biomarker. We investigated the presence of circulating tumor DNA (ctDNA) harboring a FOXL2 or TERT promoter mutation in serial plasma samples of aGCT patients to determine its clinical value for monitoring disease. METHODS: In a national multicenter study, plasma samples (n = 110) were prospectively collected from 21 patients with primary (n = 3) or recurrent (n = 18) aGCT harboring a FOXL2 402C > G and/or TERT (C228T or C250T) promoter mutation. Circulating cell-free DNA was extracted and assessed for ctDNA containing one of either mutations using droplet digital PCR (ddPCR). Fractional abundance of FOXL2 mutant and TERT mutant ctDNA was correlated with clinical parameters. RESULTS: FOXL2 mutant ctDNA was found in plasma of 11 out of 14 patients (78.6%) with aGCT with a confirmed FOXL2 mutation. TERT C228T or TERT C250T mutant ctDNA was detected in plasma of 4 of 10 (40%) and 1 of 2 patients, respectively. Both FOXL2 mutant ctDNA and TERT promoter mutant ctDNA levels correlated with disease progression and treatment response in the majority of patients. CONCLUSIONS: FOXL2 mutant ctDNA was present in the majority of aGCT patients and TERT promoter mutant ctDNA has been identified in a smaller subset of patients. Both FOXL2 and TERT mutant ctDNA detection may have clinical value in disease monitoring

    Complete lung agenesis caused by complex genomic rearrangements with neo-TAD formation at the SHH locus

    Get PDF
    During human organogenesis, lung development is a timely and tightly regulated developmental process under the control of a large number of signaling molecules. Understanding how genetic variants can disturb normal lung development causing different lung malformations is a major goal for dissecting molecular mechanisms during embryogenesis. Here, through exome sequencing (ES), array CGH, genome sequencing (GS) and Hi-C, we aimed at elucidating the molecular basis of bilateral isolated lung agenesis in three fetuses born to a non-consanguineous family. We detected a complex genomic rearrangement containing duplicated, triplicated and deleted fragments involving the SHH locus in fetuses presenting complete agenesis of both lungs and near-complete agenesis of the trachea, diagnosed by ultrasound screening and confirmed at autopsy following termination. The rearrangement did not include SHH itself, but several regulatory elements for lung development, such as MACS1, a major SHH lung enhancer, and the neighboring genes MNX1 and NOM1. The rearrangement incorporated parts of two topologically associating domains (TADs) including their boundaries. Hi-C of cells from one of the affected fetuses showed the formation of two novel TADs each containing SHH enhancers and the MNX1 and NOM1 genes. Hi-C together with GS indicate that the new 3D conformation is likely causative for this condition by an inappropriate activation of MNX1 included in the neo-TADs by MACS1 enhancer, further highlighting the importance of the 3D chromatin conformation in human disease

    Expression Profiling of Non-Aflatoxigenic Aspergillus parasiticus Mutants Obtained by 5-Azacytosine Treatment or Serial Mycelial Transfer

    Get PDF
    Aflatoxins are carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Previous studies found that repeated serial mycelial transfer or treatment of A. parasiticus with 5-azacytidine produced colonies with a fluffy phenotype and inability to produce aflatoxins. To understand how these treatments affect expression of genes involved in aflatoxin production and development, we carried out expressed sequence tag (EST)-based microarray assays to identify genes in treated clones that are differentially expressed compared to the wild-type. Expression of 183 genes was significantly dysregulated. Of these, 38 had at least two-fold or lower expression compared to the untreated control and only two had two-fold or higher expression. The most frequent change was downregulation of genes predicted to encode membrane-bound proteins. Based on this result we hypothesize that the treatments cause changes in the structure of cellular and organelle membranes that prevent normal development and aflatoxin biosynthesis
    corecore