9,212 research outputs found

    Information transfer rates in spin quantum channels

    Get PDF
    We analyze the communication efficiency of quantum information transfer along unmodulated spin chains by computing the communication rates of various protocols. The effects of temporal correlations are discussed, showing that they can be exploited to boost the transmission efficiency

    Quantum Breathing of an Impurity in a One-dimensional Bath of Interacting Bosons

    Full text link
    By means of time-dependent density-matrix renormalization-group (TDMRG) we are able to follow the real-time dynamics of a single impurity embedded in a one-dimensional bath of interacting bosons. We focus on the impurity breathing mode, which is found to be well-described by a single oscillation frequency and a damping rate. If the impurity is very weakly coupled to the bath, a Luttinger-liquid description is valid and the impurity suffers an Abraham-Lorentz radiation-reaction friction. For a large portion of the explored parameter space, the TDMRG results fall well beyond the Luttinger-liquid paradigm.Comment: 10 pages, 7 figures, main text and supplementary material merged in a single PRB style documen

    Comparison between disordered quantum spin 1/2 chains

    Get PDF
    We study the magnetic properties of two types of one dimensional XX spin 1/2 chains. The first type has only nearest neighbor interactions which can be either antiferromagnetic or ferromagnetic and the second type which has both nearest neighbor and next nearest neighbor interactions, but only antiferromagnetic in character. We study these systems in the presence of low transverse magnetic fields both analytically and numerically. Comparison of results show a close relation between the two systems, which is in agreement with results previously found in Heisenberg chains by means of a numerical real space renormalization group procedure.Comment: 7 page

    Efficient and perfect state transfer in quantum chains

    Full text link
    We present a communication protocol for chains of permanently coupled qubits which achieves perfect quantum state transfer and which is efficient with respect to the number chains employed in the scheme. The system consists of MM uncoupled identical quantum chains. Local control (gates, measurements) is only allowed at the sending/receiving end of the chains. Under a quite general hypothesis on the interaction Hamiltonian of the qubits a theorem is proved which shows that the receiver is able to asymptotically recover the messages by repetitive monitoring of his qubits.Comment: 6 pages, 2 figures; new material adde

    From perfect to fractal transmission in spin chains

    Full text link
    Perfect state transfer is possible in modulated spin chains, imperfections however are likely to corrupt the state transfer. We study the robustness of this quantum communication protocol in the presence of disorder both in the exchange couplings between the spins and in the local magnetic field. The degradation of the fidelity can be suitably expressed, as a function of the level of imperfection and the length of the chain, in a scaling form. In addition the time signal of fidelity becomes fractal. We further characterize the state transfer by analyzing the spectral properties of the Hamiltonian of the spin chain.Comment: 8 pages, 10 figures, published versio

    Ground state fidelity and quantum phase transitions in free Fermi systems

    Full text link
    We compute the fidelity between the ground states of general quadratic fermionic hamiltonians and analyze its connections with quantum phase transitions. Each of these systems is characterized by a L×LL\times L real matrix whose polar decomposition, into a non-negative Λ\Lambda and a unitary TT, contains all the relevant ground state (GS) information. The boundaries between different regions in the GS phase diagram are given by the points of, possibly asymptotic, singularity of Λ\Lambda. This latter in turn implies a critical drop of the fidelity function. We present general results as well as their exemplification by a model of fermions on a totally connected graph.Comment: 4 pages, 2 figure

    Data Quality Assessment of Ungated Flow Cytometry Data in High

    Get PDF
    Background: The recent development of semi-automated techniques for staining and analyzing flow cytometry samples has presented new challenges. Quality control and quality assessment are critical when developing new high throughput technologies and their associated information services. Our experience suggests that significant bottlenecks remain in the development of high throughput flow cytometry methods for data analysis and display. Especially, data quality control and quality assessment are crucial steps in processing and analyzing high throughput flow cytometry data. Methods: We propose a variety of graphical exploratory data analytic tools for exploring ungated flow cytometry data. We have implemented a number of specialized functions and methods in the Bioconductor package rflowcyt. We demonstrate the use of these approaches by investigating two independent sets of high throughput flow cytometry data. Results: We found that graphical representations can reveal substantial non-biological differences in samples. Empirical Cumulative Distribution Function and summary scatterplots were especially useful in the rapid identification of problems not identified by manual review. Conclusions: Graphical exploratory data analytic tools are quick and useful means of assessing data quality. We propose that the described visualizations should be used as quality assessment tools and where possible, be used for quality control
    corecore