176 research outputs found

    Live Well, Eat Well, Be Active With Diabetes Curriculum Improves Type 2 Diabetes Management

    Get PDF
    Type 2 diabetes is a complex disease with several modifiable lifestyle factors. The Extension ‘Live well, Eat well, be Active with Diabetes’ curriculum provides four 90-minute lessons teaching individuals to live well, eat well, and be active with diabetes. Fourteen Extension educators implemented and evaluated the curriculum with 107 participants. Participants reported the program helped them feel better able to take care of their health. We observed significant differences in participants’ retrospective pre and post ‘Live well,’ ‘Eat well’ and ‘be Active’ total scores. Extension has a unique opportunity to educate individuals so they may better manage their diabetes

    The 16-day planetary waves: multi-MF radar observations from the arctic to equator and comparisons with the HRDI measurements and the GSWM modelling results

    Get PDF
    International audienceThe mesospheric and lower thermospheric (MLT) winds (60?100 km) obtained by multiple MF radars, located from the arctic to equator at Tromsø (70° N, 19° E), Saskatoon (52° N, 107° W), London (43° N, 81° W), Hawaii (21° N, 157° W) and Christmas Island (2° N, 157° W), respectively, are used to study the planetary-scale 16-day waves. Based on the simultaneous observations (1993/1994), the variabilities of the wave amplitudes, periods and phases are derived. At mid- and high-latitude locations the 16-day waves are usually pervasive in the winter-centred seasons (October through March), with the amplitude gradually decreasing with height. From the subtropical location to the equator, the summer wave activities become strong at some particular altitude where the inter-hemisphere wave ducts possibly allow for the leakage of the wave from the other hemispheric winter. The observational results are in good agreement with the theoretical conclusion that, for slowly westward-traveling waves, such as the 16-day wave, vertical propagation is permitted only in an eastward background flow of moderate speed which is present in the winter hemisphere. The wave period also varies with height and time in a range of about 12?24 days. The wave latitudinal differences and the vertical structures are compared with the Global Scale Wave Model (GSWM) for the winter situation. Although their amplitude variations and profiles have a similar tendency, the discrepancies are considerable. For example, the maximum zonal amplitude occurs around 40° N for radar but 30° N for the model. The phase differences between sites due to the latitudinal effect are basically consistent with the model prediction of equatorward phase-propagation. The global 16-day waves at 95 km from the HRDI wind measurements during 1992 through 1995 are also displayed. Again, the wave is a winter dominant phenomenon with strong amplitude around the 40?60° latitude-band on both hemispheres

    Global observations of 2 day wave coupling to the diurnal tide in a high-altitude forecast-assimilation system

    Get PDF
    We examine wave components in a high-altitude forecast-assimilation system that arise from nonlinear interaction between the diurnal tide and the westward traveling quasi 2 day wave. The process yields a westward traveling “sum” wave with zonal wave number 4 and a period of 16 h, and an eastward traveling “difference” wave with zonal wave number 2 and a period of 2 days. While the eastward 2 day wave has been reported in satellite temperatures, the westward 16 h wave lies outside the Nyquist limits of resolution of twice daily local time satellite sampling. Hourly output from a high-altitude forecast-assimilation model is used to diagnose the nonlinear quadriad. A steady state primitive equation model forced by tide-2 day wave advection is used to intepret the nonlinear wave products. The westward 16 h wave maximizes in the midlatitude winter mesosphere and behaves like an inertia-gravity wave. The nonlinearly generated component of the eastward 2 day wave maximizes at high latitudes in the lower thermosphere, and only weakly penetrates to low latitudes. The 16 h and the eastward 2 day waves are of comparable amplitude and alias to the same apparent frequency when viewed from a satellite perspective

    The spread-F Experiment (SpreadFEx): Program overview and first results

    Get PDF
    We performed an extensive experimental campaign (the spread F Experiment, or SpreadFEx) from September to November 2005 to attempt to define the role of neutral atmosphere dynamics, specifically wave motions propagating upward from the lower atmosphere, in seeding equatorial spread F and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12 and the GUVI instrument aboard the TIMED satellite. Initial results of our analyses of SpreadFEx and related data indicate 1) extensive gravity wave (GW) activity apparently linked to deep convection predominantly to the west of our measurement sites, 2) the presence of small-scale GWactivity confined to lower altitudes, 3) larger-scaleGWactivity apparently penetrating to much higher altitudes suggested by electron density and TEC fluctuations in the E and F regions, 4) substantial GW amplitudes implied by digisonde electron densities, and 5) apparent direct links of these perturbations in the lower F region to spread F and plasma bubbles extending to much higher altitudes. Related efforts with correlative data are defining 6) the occurrence and locations of deep convection, 7) the spatial and temporal evolutions of plasma bubbles, the 8) 2D (height-resolved) structures of plasma bubbles, and 9) the expected propagation of GWs and tides from the lower atmosphere into the thermosphere and ionosphere

    Overview and Summary of the Spread F Experiment (SpreadFex)

    Get PDF
    We provide here an overview of, and a summary of results arising from, an extensive experimental campaign (the Spread F Experiment, or SpreadFEx) performed from September to November 2005, with primary measurements in Brazil. The motivation was to define the potential role of neutral atmosphere dynamics, specifically gravity wave motions propagating upward from the lower atmosphere, in seeding Rayleigh-Taylor instability (RTI) and plasma bubbles extending to higher altitudes. Campaign measurements focused on the Brazilian sector and included ground-based optical, radar, digisonde, and GPS measurements at a number of fixed and temporary sites. Related data on convection and plasma bubble structures were also collected by GOES 12, and the GUVI instrument aboard the TIMED satellite

    Variability of the quasi-2-day wave observed in the MLT region during the PSMOS campaign of June-August 1999

    Get PDF
    A network of 15 northern hemisphere radars has been used to measure horizontal winds in the mesosphere and lower thermosphere during the PSMOS campaign of Summer 1999. The radars are sited at latitudes ranging from 21°N to 75°N and longitudes from 142°E to 157°W. The data were examined to investigate the Northern Hemisphere structure of the quasi-2-day planetary wave during the interval June-August. The amplitude of the 2-day wave was found to exhibit great day-to-day variability. In particular, significant periodic fluctuations in amplitude occurred with periods of 8-10 and 14-17 days. These modulations were strongest in July and largely absent in June and August. In July, the wave activity can be resolved into three westward-propagating waves with zonal wave numbers of 2, 3 and 4. The periods associated with these wave numbers were 53-56, 48-50 and 42-43 h, respectively. The simultaneous presence of at least two spectral components with periods close to each other may serve to explain the observed amplitude modulations as a result of a beating between different spectral components. An earlier analysis of the planetary-wave field during this interval has revealed a westward propagating ∼16-day wave with zonal wave number 1 (Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002b) 1865-1896). A non-linear interaction between this ∼16-day planetary wave and the (3,0) Rossby-gravity mode (the 2-day-wave) provides a possible mechanism to generate the above ∼42 h/wavenumber 4 wave and the ∼55 h/wavenumber 2 waves as sum and difference secondary waves. A bispectral analysis was used to further investigate non-linear interactions between members of the planetary-wave field and suggested a number of interactions occur within the planetary-wave field, but that some of the interactions also involve the non-migrating diurnal tide with zonal wavenumber 6. © 2004 Elsevier Ltd. All rights reserved
    corecore