34 research outputs found

    Real-time quantification of microRNAs by stem–loop RT–PCR

    Get PDF
    A novel microRNA (miRNA) quantification method has been developed using stem–loop RT followed by TaqMan PCR analysis. Stem–loop RT primers are better than conventional ones in terms of RT efficiency and specificity. TaqMan miRNA assays are specific for mature miRNAs and discriminate among related miRNAs that differ by as little as one nucleotide. Furthermore, they are not affected by genomic DNA contamination. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most miRNAs. In fact, the high sensitivity, specificity and precision of this method allows for direct analysis of a single cell without nucleic acid purification. Like standard TaqMan gene expression assays, TaqMan miRNA assays exhibit a dynamic range of seven orders of magnitude. Quantification of five miRNAs in seven mouse tissues showed variation from less than 10 to more than 30 000 copies per cell. This method enables fast, accurate and sensitive miRNA expression profiling and can identify and monitor potential biomarkers specific to tissues or diseases. Stem–loop RT–PCR can be used for the quantification of other small RNA molecules such as short interfering RNAs (siRNAs). Furthermore, the concept of stem–loop RT primer design could be applied in small RNA cloning and multiplex assays for better specificity and efficiency

    Antimicrobial Postexposure Prophylaxis for Anthrax: Adverse Events and Adherence

    Get PDF
    We collected data during postexposure antimicrobial prophylaxis campaigns and from a prophylaxis program evaluation 60 days after start of antimicrobial prophylaxis involving persons from six U.S. sites where Bacillus anthracis exposures occurred. Adverse events associated with antimicrobial prophylaxis to prevent anthrax were commonly reported, but hospitalizations and serious adverse events as defined by Food and Drug Administration criteria were rare. Overall adherence during 60 days of antimicrobial prophylaxis was poor (44%), ranging from 21% of persons exposed in the Morgan postal facility in New York City to 64% of persons exposed at the Brentwood postal facility in Washington, D.C. Adherence was highest among participants in an investigational new drug protocol to receive additional antibiotics with or without anthrax vaccine—a likely surrogate for anthrax risk perception. Adherence of <60 days was not consistently associated with adverse events

    Bioterrorism-related Inhalational Anthrax in an Elderly Woman, Connecticut, 2001

    Get PDF
    On November 20, 2001, inhalational anthrax was confirmed in an elderly woman from rural Connecticut. To determine her exposure source, we conducted an extensive epidemiologic, environmental, and laboratory investigation. Molecular subtyping showed that her isolate was indistinguishable from isolates associated with intentionally contaminated letters. No samples from her home or community yielded Bacillus anthracis, and she received no first-class letters from facilities known to have processed intentionally contaminated letters. Environmental sampling in the regional Connecticut postal facility yielded B. anthracis spores from 4 (31%) of 13 sorting machines. One extensively contaminated machine primarily processes bulk mail. A second machine that does final sorting of bulk mail for her zip code yielded B. anthracis on the column of bins for her carrier route. The evidence suggests she was exposed through a cross-contaminated bulk mail letter. Such cross-contamination of letters and postal facilities has implications for managing the response to future B. anthracis–contaminated mailings

    Strategies for Treating Latent Multiple-Drug Resistant Tuberculosis: A Decision Analysis

    Get PDF
    BACKGROUND: The optimal treatment for latent multiple-drug resistant tuberculosis infection remains unclear. In anticipation of future clinical trials, we modeled the expected performance of six potential regimens for treatment of latent multiple-drug resistant tuberculosis. METHODS: A computerized Markov model to analyze the total cost of treatment for six different regimens: Pyrazinamide/ethambutol, moxifloxacin monotherapy, moxifloxacin/pyrazinamide, moxifloxacin/ethambutol, moxifloxacin/ethionamide, and moxifloxacin/PA-824. Efficacy estimates were extrapolated from mouse models and examined over a wide range of assumptions. RESULTS: In the base-case, moxifloxacin monotherapy was the lowest cost strategy, but moxifloxacin/ethambutol was cost-effective at an incremental cost-effectiveness ratio of $21,252 per quality-adjusted life-year. Both pyrazinamide-containing regimens were dominated due to their toxicity. A hypothetical regimen of low toxicity and even modest efficacy was cost-effective compared to "no treatment." CONCLUSION: In our model, moxifloxacin/ethambutol was the preferred treatment strategy under a wide range of assumptions; pyrazinamide-containing regimens fared poorly because of high rates of toxicity. Although more data are needed on efficacy of treatments for latent MDR-TB infection, data on toxicity and treatment discontinuation, which are easier to obtain, could have a substantial impact on public health practice

    Randomized controlled phase IIa clinical trial of safety, pharmacokinetics and pharmacodynamics of tenofovir and tenofovir plus levonorgestrel releasing intravaginal rings used by women in Kenya

    Get PDF
    IntroductionGlobally, many young women face the overlapping burden of HIV infection and unintended pregnancy. Protection against both may benefit from safe and effective multipurpose prevention technologies.MethodsHealthy women ages 18–34 years, not pregnant, seronegative for HIV and hepatitis B surface antigen, not using hormonal contraception, and at low risk for HIV were randomized 2:2:1 to continuous use of a tenofovir/levonorgestrel (TFV/LNG), TFV, or placebo intravaginal ring (IVR). In addition to assessing genital and systemic safety, we determined TFV concentrations in plasma and cervicovaginal fluid (CVF) and LNG levels in serum using tandem liquid chromatography-mass spectrometry. We further evaluated TFV pharmacodynamics (PD) through ex vivo CVF activity against both human immunodeficiency virus (HIV)-1 and herpes simplex virus (HSV)-2, and LNG PD using cervical mucus quality markers and serum progesterone for ovulation inhibition.ResultsAmong 312 women screened, 27 were randomized to use one of the following IVRs: TFV/LNG (n = 11); TFV-only (n = 11); or placebo (n = 5). Most screening failures were due to vaginal infections. The median days of IVR use was 68 [interquartile range (IQR), 36–90]. Adverse events (AEs) were distributed similarly among the three arms. There were two non-product related AEs graded &gt;2. No visible genital lesions were observed. Steady state geometric mean amount (ssGMA) of vaginal TFV was comparable in the TFV/LNG and TFV IVR groups, 43,988 ng/swab (95% CI, 31,232, 61,954) and 30337 ng/swab (95% CI, 18,152, 50,702), respectively. Plasma TFV steady state geometric mean concentration (ssGMC) was &lt;10 ng/ml for both TFV IVRs. In vitro, CVF anti-HIV-1 activity showed increased HIV inhibition over baseline following TFV-eluting IVR use, from a median of 7.1% to 84.4% in TFV/LNG, 15.0% to 89.5% in TFV-only, and −27.1% to −20.1% in placebo participants. Similarly, anti-HSV-2 activity in CVF increased &gt;50 fold after use of TFV-containing IVRs. LNG serum ssGMC was 241 pg/ml (95% CI 185, 314) with rapid rise after TFV/LNG IVR insertion and decline 24-hours post-removal (586 pg/ml [95% CI 473, 726] and 87 pg/ml [95% CI 64, 119], respectively).ConclusionTFV/LNG and TFV-only IVRs were safe and well tolerated among Kenyan women. Pharmacokinetics and markers of protection against HIV-1, HSV-2, and unintended pregnancy suggest the potential for clinical efficacy of the multipurpose TFV/LNG IVR.Clinical Trial RegistrationNCT03762382 [https://clinicaltrials.gov/ct2/show/NCT03762382

    New approaches in the diagnosis and treatment of latent tuberculosis infection

    Get PDF
    With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence

    Robust Digital Watermarking Based on the Log-Polar Mapping

    Get PDF
    The geometrical attacks are still an open problem for many digital watermarking algorithms used in present time. Most of geometrical attacks can be described by using affine transforms. This article deals with digital watermarking in images robust against the affine transformations. The new approach to improve robustness against geometrical attacks is presented. The discrete Fourier transform and log-polar mapping is used for watermark embedding and for watermark detection. Some attacks against the embedded watermarks are performed and the results are given
    corecore