257 research outputs found
Hematological variations in healthy participants exposed 2 h to propylene glycol ethers under controlled conditions.
Glycol ethers are solvents used in a plethora of occupational and household products exposing the users to potential toxic effects. Several glycol ethers derived from ethylene glycol induce hematological toxicity, such as anemia in workers. The exposure effects on blood cells of glycol ethers derived from propylene glycol are unknown in humans. The aim of our study was to evaluate blood parameters indicative of red blood cell (RBC) hemolysis and oxidative stress in participants exposed to propylene glycol (propylene glycol monobutyl ether (PGBE) and propylene glycol monomethyl ether (PGME)), two extensively used propylene glycol derivatives worldwide. Seventeen participants were exposed 2 h in a control inhalation exposure chamber to low PGME (35 ppm) and PGBE (15 ppm) air concentrations. Blood was regularly collected before, during (15, 30, 60, and 120 min), and 60 min after exposure for RBC and oxidative stress analyses. Urine was also collected for clinical effects related to hemolysis. Under the study conditions, our results showed that the blood parameters such as RBCs, hemoglobin concentration, and white blood cells tended to increase in response to PGME and PGBE exposures. These results raise questions about the possible effects in people regularly exposed to higher concentrations, such as workers
3D Real-Time Echocardiography Combined with Mini Pressure Wire Generate Reliable Pressure-Volume Loops in Small Hearts
BACKGROUND:
Pressure-volume loops (PVL) provide vital information regarding ventricular performance and pathophysiology in cardiac disease. Unfortunately, acquisition of PVL by conductance technology is not feasible in neonates and small children due to the available human catheter size and resulting invasiveness. The aim of the study was to validate the accuracy of PVL in small hearts using volume data obtained by real-time three-dimensional echocardiography (3DE) and simultaneously acquired pressure data.
METHODS:
In 17 piglets (weight range: 3.6–8.0 kg) left ventricular PVL were generated by 3DE and simultaneous recordings of ventricular pressure using a mini pressure wire (PVL3D). PVL3D were compared to conductance catheter measurements (PVLCond) under various hemodynamic conditions (baseline, alpha-adrenergic stimulation with phenylephrine, beta-adrenoreceptor-blockage using esmolol). In order to validate the accuracy of 3D volumetric data, cardiac magnetic resonance imaging (CMR) was performed in another 8 piglets.
RESULTS:
Correlation between CMR- and 3DE-derived volumes was good (enddiastolic volume: mean bias -0.03ml ±1.34ml). Computation of PVL3D in small hearts was feasible and comparable to results obtained by conductance technology. Bland-Altman analysis showed a low bias between PVL3D and PVLCond. Systolic and diastolic parameters were closely associated (Intraclass-Correlation Coefficient for: systolic myocardial elastance 0.95, arterial elastance 0.93, diastolic relaxation constant tau 0.90, indexed end-diastolic volume 0.98). Hemodynamic changes under different conditions were well detected by both methods (ICC 0.82 to 0.98). Inter- and intra-observer coefficients of variation were below 5% for all parameters.
CONCLUSIONS:
PVL3D generated from 3DE combined with mini pressure wire represent a novel, feasible and reliable method to assess different hemodynamic conditions of cardiac function in hearts comparable to neonate and infant size. This methodology may be integrated into clinical practice and cardiac catheterization programs and has the capability to contribute to clinical decision making even in small hearts
Parental occupational exposure to pesticides and risk of childhood cancer in Switzerland: a census-based cohort study.
Pesticide exposure is a suspected risk factor for childhood cancer. We investigated the risk of developing childhood cancer in relation to parental occupational exposure to pesticides in Switzerland for the period 1990-2015.
From a nationwide census-based cohort study in Switzerland, we included children aged < 16 years at national censuses of 1990 and 2000 and followed them until 2015. We extracted parental occupations reported at the census closest to the birth year of the child and estimated exposure to pesticides using a job exposure matrix. Cox proportional hazards models, adjusted for potential confounders, were fitted for the following outcomes: any cancer, leukaemia, central nervous system tumours (CNST), lymphoma, non-CNS solid tumours.
Analyses of maternal (paternal) exposure were based on approximately 15.9 (15.1) million-person years at risk and included 1891 (1808) cases of cancer, of which 532 (503) were leukaemia, 348 (337) lymphomas, 423 (399) CNST, and 588 (569) non-CNS solid tumours. The prevalence of high likelihood of exposure was 2.9% for mothers and 6.7% for fathers. No evidence of an association was found with maternal or paternal exposure for any of the outcomes, except for "non-CNS solid tumours" (High versus None; Father: adjusted HR [95%CI] =1.84 [1.31-2.58]; Mother: 1.79 [1.13-2.84]). No evidence of an association was found for main subtypes of leukaemia and lymphoma. A post-hoc analysis on frequent subtypes of "non-CNS solid tumours" showed positive associations with wide CIs for some cancers.
Our study suggests an increased risk for solid tumours other than in the CNS among children whose parents were occupationally exposed to pesticides; however, the small numbers of cases limited a closer investigation of cancer subtypes. Better exposure assessment and pooled studies are needed to further explore a possible link between specific childhood cancers types and parental occupational exposure to pesticides
Thallium uptake and risk in vegetables grown in pyrite past-mining contaminated soil amended with organic fertilizer (compost): A potential method for Tl contamination remediation
Thallium (Tl) is a highly toxic trace metal that can cause severe pollution and damage to the ecological system. In this study, a field trial was conducted in a Tl-rich pyrite-barite past-mining area to unveil the fate of Tl in agricultural practice. Tuscany kale and red chicory cultivated in soil impacted by the dismissed mine of Valdicastello Carducci (Northern Tuscany, Italy) displayed significantly different uptake behaviors of Tl. Hyper-accumulation of Tl was observed in kale leaves and its content reached up to 17.1 mg kg−1 whereas only <0.70 mg kg−1 of Tl was found in leaves of red chicory. Due to the regionally polymetallic pollution, Tuscany kale grown in this area possessed a great Tl intake risk for the residents. As for the fertilization treatment, Tl in Tuscany kale leaves fertilized with mineral fertilizer (NPK) and compost were 21.4 and 12.8 mg kg−1. The results suggested a potential remediation ability of compost in diminishing Tl in the vegetable leaves and thus may reduce its risk in the soil-crop system. Since Tl poisoning emergency may occur in agricultural fields near past-mining zones, it is critical to establish possible remediation measures to ensure food safety surrounding former mining areas likewise
The interplay between bone and glucose metabolism
The multiple endocrine functions of bone other than those related to mineral metabolism, such as regulation of insulin sensitivity, glucose homeostasis, and energy metabolism, have recently been discovered. In vitro and murine studies investigated the impact of several molecules derived from osteoblasts and osteocytes on glucose metabolism. In addition, the effect of glucose on bone cells suggested a mutual cross-talk between bone and glucose homeostasis. In humans, these mechanisms are the pivotal determinant of the skeletal fragility associated with both type 1 and type 2 diabetes. Metabolic abnormalities associated with diabetes, such as increase in adipose tissue, reduction of lean mass, effects of hyperglycemia per se, production of the advanced glycation end products, diabetes-associated chronic kidney disease, and perturbation of the calcium-PTH-vitamin D metabolism, are the main mechanisms involved. Finally, there have been multiple reports of antidiabetic drugs affecting the skeleton, with differences among basic and clinical research data, as well as of anti-osteoporosis medication influencing glucose metabolism. This review focuses on the aspects linking glucose and bone metabolism by offering insight into the most recent evidence in humans
Expression of the Neuroblastoma-Associated ALK-F1174L Activating Mutation During Embryogenesis Impairs the Differentiation of Neural Crest Progenitors in Sympathetic Ganglia.
Neuroblastoma (NB) is an embryonal malignancy derived from the abnormal differentiation of the sympathetic nervous system. The Anaplastic Lymphoma Kinase (ALK) gene is frequently altered in NB, through copy number alterations and activating mutations, and represents a predisposition in NB-genesis when mutated. Our previously published data suggested that ALK activating mutations may impair the differentiation potential of neural crest (NC) progenitor cells. Here, we demonstrated that the expression of the endogenous ALK gene starts at E10.5 in the developing sympathetic ganglia (SG). To decipher the impact of deregulated ALK signaling during embryogenesis on the formation and differentiation of sympathetic neuroblasts, Sox10-Cre;LSL-ALK-F1174L embryos were produced to restrict the expression of the human ALK-F1174L transgene to migrating NC cells (NCCs). First, ALK-F1174L mediated an embryonic lethality at mid-gestation and an enlargement of SG with a disorganized architecture in Sox10-Cre;LSL-ALK-F1174L embryos at E10.5 and E11.5. Second, early sympathetic differentiation was severely impaired in Sox10-Cre;LSL-ALK-F1174L embryos. Indeed, their SG displayed a marked increase in the proportion of NCCs and a decrease of sympathetic neuroblasts at both embryonic stages. Third, neuronal and noradrenergic differentiations were blocked in Sox10-Cre;LSL-ALK-F1174L SG, as a reduced proportion of Phox2b <sup>+</sup> sympathoblasts expressed βIII-tubulin and almost none were Tyrosine Hydroxylase (TH) positive. Finally, at E10.5, ALK-F1174L mediated an important increase in the proliferation of Phox2b <sup>+</sup> progenitors, affecting the transient cell cycle exit observed in normal SG at this embryonic stage. Altogether, we report for the first time that the expression of the human ALK-F1174L mutation in NCCs during embryonic development profoundly disturbs early sympathetic progenitor differentiation, in addition to increasing their proliferation, both mechanisms being potential crucial events in NB oncogenesis
Can Smaller-Scale Comprehensive Cancer Centers Provide Outstanding Care in Abdominal and Thoracic Pediatric Solid Tumor Surgery? Results of a 14-Year Retrospective Single-Center Analysis
Purpose: Quality of care and its measurement represent a considerable challenge for pediatric smaller-scale comprehensive cancer centers (pSSCC) providing surgical oncology services. It remains unclear whether center size and/or yearly case-flow numbers influence the quality of care, and therefore impact outcomes for this population of patients. Patients and Methods: We performed a 14-year, retrospective, single-center analysis, assessing adherence to treatment protocols and surgical adverse events as quality indicators in abdominal and thoracic pediatric solid tumor surgery. Results: Forty-eight patients, enrolled in a research-associated treatment protocol, underwent 51 cancer-oriented surgical procedures. All the protocols contain precise technical criteria, indications, and instructions for tumor surgery. Overall, compliance with such items was very high, with 997/1,035 items (95%) meeting protocol requirements. There was no surgical mortality. Twenty-one patients (43%) had one or more complications, for a total of 34 complications (66% of procedures). Overall, 85% of complications were grade 1 or 2 according to Clavien-Dindo classification requiring observation or minor medical treatment. Case-sample and outcome/effectiveness data were comparable to published series. Overall, our data suggest that even with the modest caseload of a pSSCC within a Swiss tertiary academic hospital, compliance with international standards can be very high, and the incidence of adverse events can be kept minimal. Conclusion: Open and objective data sharing, and discussion between pSSCCs, will ultimately benefit our patient populations. Our study is an initial step towards the enhancement of critical self-review and quality-of-care measurements in this setting
Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover
The aim of the study was to determine if an As-contaminated soil, stabilized using zerovalent iron (Fe0) and its combination with gypsum waste, coal fly ash, peat, or sewage sludge, could be used as a construction material at the top layer of the landfill cover. A reproduction of 2 m thick protection/vegetation layer of a landfill cover using a column setup was used to determine the ability of the amendments to reduce As solubility and stimulate soil functionality along the soil profile. Soil amendment with Fe0 was highly efficient in reducing As in soil porewater reaching 99 % reduction, but only at the soil surface. In the deeper soil layers (below 0.5 m), the Fe treatment had a reverse effect, As solubility increased dramatically exceeding that of the untreated soil or any other treatment by one to two orders of magnitude. A slight bioluminescence inhibition of Vibrio fischeri was detected in the Fe0 treatment. Soil amendment with iron and peat showed no toxicity to bacteria and was the most efficient in reducing dissolved As in soil porewater throughout the 2 m soil profile followed by iron and gypsum treatment, most likely resulting from a low soil density and a good air diffusion to the soil. The least suitable combination of soil amendments for As immobilization was a mixture of iron with coal fly ash. An increase in all measured enzyme activities was observed in all treatments, particularly those receiving organic matter. For As to be stable in soil, a combination of amendments that can keep the soil porous and ensure the air diffusion through the entire soil layer of the landfill cover is required
Residential exposure to solar ultraviolet radiation and risk of childhood hematological malignancies in Switzerland: A census-based cohort study.
Still little is known about possible environmental risk factors of childhood hematological malignancies (CHM). Previous studies suggest that ultraviolet radiation (UVR) exposure is associated with a lower risk of acute lymphoblastic leukemia (ALL) in children. We investigated the association between solar UVR exposure and risk of CHM in Switzerland, a country with greatly varying topography and weather conditions. We included all resident children aged 0-15 years from the Swiss National Cohort during 1990-2016 and identified incident cancer cases through probabilistic record linkage with the Swiss Childhood Cancer Registry. We estimated the overall annual mean UV level and the mean level for the month of July during 2004-2018 at children's homes using a climatological model of the midday (11 am-3 pm) UV-index (UVI) with a spatial resolution of 1.5-2 km. Using risk-set sampling, we obtained a nested case-control data set matched by birth year and fitted conditional logistic regression models (virtually equivalent to analyzing full cohort data using proportional hazards models) adjusting for sex, neighborhood socio-economic position, urbanization, air pollution, and background ionizing radiation. Our analyses included 1446 cases of CHM. Estimated adjusted hazard ratios (HR) per unit increase in UVI in July were 0.76 (95% CI 0.59-0.98) for leukemia and 0.74 (0.55-0.98) for ALL. Results for annual exposure were similar but confidence intervals were wider and included one. We found no evidence for an association for lymphoma overall (HR 1.14, 95% CI 0.59-2.19 for annual exposure) or diagnostic subgroups. Our study provides further support for an inverse association between exposure to ambient solar UVR and childhood ALL
TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth.
The embryonic transcription factors TWIST1/2 are frequently overexpressed in cancer, acting as multifunctional oncogenes. Here we investigate their role in neuroblastoma (NB), a heterogeneous childhood malignancy ranging from spontaneous regression to dismal outcomes despite multimodal therapy. We first reveal the association of TWIST1 expression with poor survival and metastasis in primary NB, while TWIST2 correlates with good prognosis. Secondly, suppression of TWIST1 by CRISPR/Cas9 results in a reduction of tumor growth and metastasis colonization in immunocompromised mice. Moreover, TWIST1 knockout tumors display a less aggressive cellular morphology and a reduced disruption of the extracellular matrix (ECM) reticulin network. Additionally, we identify a TWIST1-mediated transcriptional program associated with dismal outcome in NB and involved in the control of pathways mainly linked to the signaling, migration, adhesion, the organization of the ECM, and the tumor cells versus tumor stroma crosstalk. Taken together, our findings confirm TWIST1 as promising therapeutic target in NB
- …
