119 research outputs found
In vitro regeneration and conservation of Indigo (Indigofera tinctoria L.) by slow growth induction
An efficient protocol for rapid in vitro clonal propagation has been established. Shoot proliferation was obtained from nodal explants in Murashige and Skoog medium supplemented with 1.0 mg L-1BA and 0.1 mg L-1 IAA. The shoots were subsequently subcultured every four weeks. The shoots were then rooted in vitro in MS medium supplemented with varying concentrations of auxins. The most efficient rooting was observed in MS supplemented with 1.5 mg L-1 IAA. The effective acclimatization (91.67 per cent) was obtained in sterilized sand. Slow growth was induced with varying concentration of mannitol (5 g L-1 to 30 g L-1). Maximum slow growth induction with 100 per cent regeneration was recorded in mannitol (10 g L-1) supplemented medium. After 28 weeks in slow growth medium, cultures when transferred to shoot proliferation medium gave 100 per cent regeneration. The regenerants from slow growth induction were found to be genetically stable
A Rapid Protocol for Somatic Embryogenesis Mediated Regeneration in Banana (Musa Spp.) Cv. Nendran
A simple and rapid protocol for somatic embryogenesis in banana cv. Nendran (AAB) using immature male flowers (IMF) has been developed. The IMF produced palewhite to yellow, globular embryogenic callus on MS medium supplemented with BA (0.05 - 0.50mgL-1) and picloram (0.50 - 2.00mgL-1) with explant response of to 30 per cent. Addition of ascorbic acid (20mgL-1) and Gelrite© (0.45 per cent) to callus induction medium reduced interference from phenolic exudation. Embryogenesis was induced (33.3 to 60 per cent) on semisolid (0.30 per cent Gelrite©) MS medium supplemented with BA 2mgL-1 + IAA 0.5mgL-1. The somatic embryos showed 60-80 per cent germination on half- strength semisolid MS medium with BA 2mgL-1 + IAA 0.5mgL-1. Transfer of germinated embryos to semisolid MS medium supplemented with BA 2mgL-1 + NAA 1mgL-1under 14 h light /8h dark photoperiod resulted in hundred percent conversion to plantlets. This protocol takes merely 6 months for producing plantlets from immature flower buds through somatic embryogenesis, without any intermediate liquid cultures
The Origin of Blue-Green Window and the Propagation of Radiation in Ocean Waters
A review of the present knowledge about the origin of blue-green window in the attenuation spectrum of ocean waters is presented. The various physical mechanisms which contribute to the formation of the w-indow are dealt separately and discussed. The typical values of attenuation coefficient arising out of the various processes are compiled to obtain the total beam attenuation coefficient. These values are then compared with measured values of attenuation coefficient for ocean waters collected from Arabian sea and Bay of Bengal. The region of minimum attenuation in pure particle-free sea water is found to be at 450 to 500 nm. It is sbown that in the presence of suspended 'particlesand chlorophyll, the window shifts to longer wavelength side. Some suggestions for future work in this area are also given in the concluding section
The Molecular Epidemiology of Clostridioides difficile Infection in Central India: A Prospective Observational Cohort Study
This prospective observational cohort study aimed to establish and compare baseline rates of Clostridioides difficile infection (CDI) in community and hospitalized patients in Nagpur and rural Melghat Maharashtra, including adults aged ≥18 years with a diagnosis of diarrhoea as defined as 3 or more loose stools in a 24 h period. All diarrhoeal samples were tested for CDI using the C. diff Quik Chek Complete enzyme immunoassay. C. difficile-positive stool samples were characterised by toxigenic culture, antimicrobial susceptibility testing and PCR ribotyping. C. difficile testing was performed on 1683 patients with acute diarrhoea. A total of 54 patients (3.21%; 95% CI: 2.42–4.17) tested positive for both the GDH antigen and free toxin. The risk factors for CDI included the presence of co-morbidities, antibiotic usage, and immunosuppression. The detected PCR ribotypes included 053-16, 017, 313, 001, 107, and 216. Our findings show that toxigenic C. difficile is an important but neglected aetiologic agent of infective diarrhoea in Central India. These results underscore the need to enhance the awareness and testing of patients with diarrhoea in India regarding the presence of toxigenic C. difficile, particularly in high-risk individuals with multiple co-morbidities, immunosuppression, and recent or ongoing antibiotic exposure or hospitalization
Observation of Collider Muon Neutrinos with the SND@LHC Experiment
We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A dataset of proton-proton collisions at
√
s
=
13.6
TeV
collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of
36.8
fb
−
1
. The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudorapidity region of
7.2
<
η
<
8.4
, inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8
ν
μ
interaction candidate events remain with an estimated background of 0.086 events, yielding a significance of about 7 standard deviations for the observed
ν
μ signal
Measurement of the muon flux at the SND@LHC experiment
The Scattering and Neutrino Detector at the LHC (SND@LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < η< 8.4 . The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS). In this article we report the measurement of the muon flux in three subdetectors: the emulsion, the SciFi trackers and the DownStream Muon detector. The muon flux per integrated luminosity through an 18 × 18 cm 2 area in the emulsion is: 1.5±0.1(stat)×104fb/cm2. The muon flux per integrated luminosity through a 31 × 31 cm 2 area in the centre of the SciFi is: 2.06±0.01(stat)±0.12(sys)×104fb/cm2 The muon flux per integrated luminosity through a 52 × 52 cm 2 area in the centre of the downstream muon system is: 2.35±0.01(stat)±0.10(sys)×104fb/cm2 The total relative uncertainty of the measurements by the electronic detectors is 6 % for the SciFi and 4 % for the DS measurement. The Monte Carlo simulation prediction of these fluxes is 20–25 % lower than the measured values
Measurement of the muon flux at the SND@LHC experiment
The Scattering and Neutrino Detector at the LHC (SND-LHC) started taking data at the beginning of Run 3 of the LHC. The experiment is designed to perform measurements with neutrinos produced in proton-proton collisions at the LHC in an energy range between 100 GeV and 1 TeV. It covers a previously unexplored pseudo-rapidity range of 7.2 < eta< 8.4. The detector is located 480 m downstream of the ATLAS interaction point in the TI18 tunnel. It comprises a veto system, a target consisting of tungsten plates interleaved with nuclear emulsion and scintillating fiber (SciFi) trackers, followed by a muon detector (UpStream, US and DownStream, DS)
Observation of Collider Muon Neutrinos with the SND@LHC Experiment
We report the direct observation of muon neutrino interactions with the SND@LHC detector at the Large Hadron Collider. A dataset of proton-proton collisions at s=13.6 TeV collected by SND@LHC in 2022 is used, corresponding to an integrated luminosity of 36.8 fb-1. The search is based on information from the active electronic components of the SND@LHC detector, which covers the pseudorapidity region of 7.2<8.4, inaccessible to the other experiments at the collider. Muon neutrino candidates are identified through their charged-current interaction topology, with a track propagating through the entire length of the muon detector. After selection cuts, 8 νμ interaction candidate events remain with an estimated background of 0.086 events, yielding a significance of about 7 standard deviations for the observed νμ signal
Results and Perspectives from the First Two Years of Neutrino Physics at the LHC by the SND@LHC Experiment
Results and Perspectives from the First Two Years of Neutrino Physics at the LHC by the SND@LHC Experiment
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux entering the acceptance was also measured. To improve the rejection power of the detector and to increase the fiducial volume, a third Veto plane was recently installed. The energy resolution of the calorimeter system was measured in a test beam. This will help with the identification of νe interactions that can be used to probe charm production in the pseudo-rapidity range of SND@LHC (7.2 < η < 8.4). Events with three outgoing muons have been observed and are being studied. With no vertex in the target, these events are very likely from muon trident production in the rock before the detector. Events with a vertex in the detector could be from trident production, photon conversion, or positron annihilation. To enhance SND@LHC’s physics case, an upgrade is planned for HL-LHC that will increase the statistics and reduce the systematics. The installation of a magnet will allow the separation of νμ from ν¯μWe acknowledge the support for the construction and operation of the SND@LHC detector provided by the following funding agencies: CERN; the Bulgarian Ministry of Education and Science within the National Roadmap for Research Infrastructures 2020–2027 (object CERN); ANID—Millennium Program—ICN2019_044 (Chile); the Deutsche Forschungsgemeinschaft (DFG, ID 496466340); the Italian National Institute for Nuclear Physics (INFN); JSPS, MEXT, the Global COE program of Nagoya University, the Promotion and Mutual Aid Corporation for Private Schools of Japan for Japan; the National Research Foundation of Korea with grant numbers 2021R1A2C2011003, 2020R1A2C1099546, 2021R1F1A1061717, and 2022R1A2C100505; Fundação para a Ciência e a Tecnologia, FCT (Portugal), CERN/FIS-INS/0028/2021; the Swiss National Science Foundation (SNSF); TENMAK for Turkey (Grant No. 2022TENMAK(CERN) A5.H3.F2-1). M. Climesu, H. Lacker and R. Wanke are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project 496466340. We acknowledge the funding of individuals by Fundação para a Ciência e a Tecnologia, FCT (Portugal) with grant numbers CEECIND/01334/2018, CEECINST/00032/2021 and PRT/BD/153351/2021.CERNBulgarian Ministry of Education and ScienceANID—Millennium ProgramDeutsche ForschungsgemeinschaftItalian National Institute for Nuclear Physics (INFN)JSPS, MEXT, the Global COE program of Nagoya University, the Promotion and Mutual Aid Corporation for Private Schools of Japan for JapanNational Research Foundation of KoreaFundação para a Ciência e a Tecnologia, FCT (Portugal)Swiss National Science Foundation (SNSF)TENMAK for TurkeyPeer Reviewe
- …
