631 research outputs found
Training-induced criticality in martensites
We propose an explanation for the self-organization towards criticality
observed in martensites during the cyclic process known as `training'. The
scale-free behavior originates from the interplay between the reversible phase
transformation and the concurrent activity of lattice defects. The basis of the
model is a continuous dynamical system on a rugged energy landscape, which in
the quasi-static limit reduces to a sandpile automaton. We reproduce all the
principal observations in thermally driven martensites, including power-law
statistics, hysteresis shakedown, asymmetric signal shapes, and correlated
disorder.Comment: 5 pages, 4 figure
Modelling avalanches in martensites
Solids subject to continuous changes of temperature or mechanical load often
exhibit discontinuous avalanche-like responses. For instance, avalanche
dynamics have been observed during plastic deformation, fracture, domain
switching in ferroic materials or martensitic transformations. The statistical
analysis of avalanches reveals a very complex scenario with a distinctive lack
of characteristic scales. Much effort has been devoted in the last decades to
understand the origin and ubiquity of scale-free behaviour in solids and many
other systems. This chapter reviews some efforts to understand the
characteristics of avalanches in martensites through mathematical modelling.Comment: Chapter in the book "Avalanches in Functional Materials and
Geophysics", edited by E. K. H. Salje, A. Saxena, and A. Planes. The final
publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-45612-6_
Investigating the flyby scenario for the HD 141569 system
HD 141569, a triple star system, has been intensively observed and studied
for its massive debris disk. It was rather regarded as a gravitationally bound
triple system but recent measurements of the HD 141569A radial velocity seem to
invalidate this hypothesis. The flyby scenario has therefore to be investigated
to test its compatibility with the observations. We present a study of the
flyby scenario for the HD141569 system, by considering 3 variants: a sole
flyby, a flyby associated with one planet and a flyby with two planets. We use
analytical calculations and perform N-body numerical simulations of the flyby
encounter. The binary orbit is found to be almost fixed by the observational
constraint on a edge-on plane with respect to the observers. If the binary has
had an influence on the disk structure, it should have a passing time at the
periapsis between 5000 and 8000 years ago and a distance at periapsis between
600 and 900 AU. The best scenario for reproducing the disk morphology is a
flyby with only 1 planet. For a 2 Mj (resp. 8 Mj) planet, its eccentricity must
be around 0.2 (resp. below 0.1). In the two cases, its apoapsis is about 130
AU. Although the global disk shape is reasonably well reproduced, some features
cannot be explain by the present model and the likehood of the flyby event
remains an issue. Dynamically speaking, HD 141569 is still a puzzling system
The use of cosmic muons in detecting heterogeneities in large volumes
The muon intensity attenuation method to detect heterogeneities in large
matter volumes is analyzed. Approximate analytical expressions to estimate the
collection time and the signal to noise ratio, are proposed and validated by
Monte Carlo simulations. Important parameters, including point spread function
and coordinate reconstruction uncertainty are also estimated using Monte Carlo
simulations.Comment: 8 pages, 11 figures, submetted to NIM
Stable, metastable and unstable states in the mean-field RFIM at T=0
We compute the probability of finding metastable states at a given field in
the mean-field random field Ising model at T=0. Remarkably, this probability is
finite in the thermodynamic limit, even on the so-called ``unstable'' branch of
the magnetization curve. This implies that the branch is reachable when the
magnetization is controlled instead of the magnetic field, in contrast with the
situation in the pure system.Comment: 10 pages, 3 figure
Zero-temperature random-field Ising model on a bilayered Bethe lattice
Peer reviewedPublisher PD
Epidemics in Networks of Spatially Correlated Three-dimensional Root Branching Structures
Using digitized images of the three-dimensional, branching structures for
root systems of bean seedlings, together with analytical and numerical methods
that map a common 'SIR' epidemiological model onto the bond percolation
problem, we show how the spatially-correlated branching structures of plant
roots affect transmission efficiencies, and hence the invasion criterion, for a
soil-borne pathogen as it spreads through ensembles of morphologically complex
hosts. We conclude that the inherent heterogeneities in transmissibilities
arising from correlations in the degrees of overlap between neighbouring
plants, render a population of root systems less susceptible to epidemic
invasion than a corresponding homogeneous system. Several components of
morphological complexity are analysed that contribute to disorder and
heterogeneities in transmissibility of infection. Anisotropy in root shape is
shown to increase resilience to epidemic invasion, while increasing the degree
of branching enhances the spread of epidemics in the population of roots. Some
extension of the methods for other epidemiological systems are discussed.Comment: 21 pages, 8 figure
On the observability of resonant structures in planetesimal disks due to planetary migration
We present a thorough study of the impact of a migrating planet on a
planetesimal disk, by exploring a broad range of masses and eccentricities for
the planet. We discuss the sensitivity of the structures generated in debris
disks to the basic planet parameters. We perform many N-body numerical
simulations, using the symplectic integrator SWIFT, taking into account the
gravitational influence of the star and the planet on massless test particles.
A constant migration rate is assumed for the planet. The effect of planetary
migration on the trapping of particles in mean motion resonances is found to be
very sensitive to the initial eccentricity of the planet and of the
planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out
all the resonant structures, except for the most massive planets. The
planetesimals also initially have to be on orbits with a mean eccentricity of
less than than 0.1 in order to keep the resonant clumps visible. This numerical
work extends previous analytical studies and provides a collection of disk
images that may help in interpreting the observations of structures in debris
disks. Overall, it shows that stringent conditions must be fulfilled to obtain
observable resonant structures in debris disks. Theoretical models of the
origin of planetary migration will therefore have to explain how planetary
systems remain in a suitable configuration to reproduce the observed
structures.Comment: 16 pages, 13 figures. Accepted for publication in A&
Expression and characterization of the Trypanosoma cruzi dihydrofolate reductase domain
We have cloned and expressed in Escherichia coli a 702-base pair gene coding for the dihydrofolate reductase (DHFR) domain of the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Trypanosoma cruzi. The DHFR domain was purified to homogeneity by methotrexate-Sepharose chromatography followed by an anion-exchange chromatography step in a mono Q column, and displayed a single 27-kDa band on SDS-PAGE. Gel filtration showed that the catalytic domain was expressed as a monomer. Kinetic parameters were similar to those reported for the wild-type bifunctional enzyme with Km values of 0.75 microM for dihydrofolate and 16 microM for NADPH and a kcat value of 16.5 s-1. T. cruzi DHFR is poorly inhibited by trimethoprim and pyrimethamine and the inhibition constants were always lower for the bifunctional enzyme. The binding of methotrexate was characteristic of a class of inhibitors that form an initial complex which isomerizes slowly to a tighter complex and are referred to as 'slow, tight-binding' inhibitors. While the slow-binding step of inhibition was apparently unaffected in the individually expressed DHFR domain, the overall inhibition constant was two-fold higher as a consequence of the superior inhibition constant value obtained for the initial inhibitory complex
- …
