102 research outputs found

    Engagement And Solidarity While Learning

    Get PDF
    2020 and 2021 were difficult years for students attending higher education and secondary education especially if they were preparing to enter higher education. Teaching was adapted, and assessments were the possible ones according to what we lived and experienced. Thus, students need innovative and stimulating teaching and learning practices that motivate and involve them in the teaching/learning processes. Information and Communication Technologies (ICT) and digital platforms have seen their indiscriminate use, not without sometimes, teachers and students questioning whether they were being used in the best conceivable way or taken full advantage of. Face-to-face group work and involvement with the needs of colleagues lost some space for achievement and effectiveness. The preference for individual work and the visible reduction in solidarity among colleagues was an issue/question posed at the beginning of this study. An activity was proposed over a semester to students of Statistical Methods from Informatics Engineering. This curricular unit enrols 533 students, 85 on an after-work basis. The objective of this proposal was to create a collaborative learning platform where students could interact with each other within the scope of the curricular unit. Cumulatively, it was an objective that students deepen the topics taught in class, including references provided, and reviewing exercises conducted by their colleagues. Regularly professors corrected the materials proposed by the students. All students who participated had access to all the work developed. The evaluation of students\u27 involvement, collaboration, and solidarity in addition to the results will be discussed and presented

    The scaling of genetic diversity in a changing and fragmented world

    Get PDF
    Most species do not live in a constant environment over space or time. Their environment is often heterogeneous with a huge variability in resource availability and exposure to pathogens or predators, which may affect the local densities of the species. Moreover, the habitat might be fragmented, preventing free and isotropic migrations between local sub-populations (demes) of a species, making some demes more isolated than others. For example, during the last ice age populations of many species migrated towards refuge areas from which re-colonization originated when conditions improved. However, populations that could not move fast enough or could not adapt to the new environmental conditions faced extinctions. Populations living in these types of dynamic environments are often referred to as metapopulations and modeled as an array of subdivisions (or demes) that exchange migrants with their neighbors. Several studies have focused on the description of their demography, probability of extinction and expected patterns of diversity at different scales. Importantly, all these evolutionary processes may affect genetic diversity, which can affect the chance of populations to persist. In this chapter we provide an overview on the consequences of fragmentation, long-distance dispersal, range contractions and range shifts on genetic diversity. In addition, we describe new methods to detect and quantify underlying evolutionary processes from sampled genetic data.Laboratoire d’Excellence (LABEX) entitled TULIP: (ANR-10-LABX-41)

    Associated Malformations in Children with Orofacial Clefts in Portugal: A 31-Year Study

    Get PDF
    Orofacial clefts are among the most common congenital craniofacial malformations and may be associated with other birth defects. However, the proportion and type of additional anomalies vary greatly between studies. This study assessed the prevalence and type of associated congenital malformations in children with orofacial clefts, who attended the largest cleft lip and palate tertiary referral center in Portugal.info:eu-repo/semantics/publishedVersio

    Iron age genomic data from Althiburos – Tunisia renew the debate on the origins of African taurine cattle

    Get PDF
    The Maghreb is a key region for understanding the dynamics of cattle dispersal and admixture with local aurochs following their earliest domestication in the Fertile Crescent more than 10,000 years ago. Here, we present data on autosomal genomes and mitogenomes obtained for four archaeological specimens of Iron Age (∼2,800 cal BP–2,000 cal BP) domestic cattle from the Eastern Maghreb, i.e. Althiburos (El Kef, Tunisia). D-loop sequences were obtained for an additional eight cattle specimens from this site. Maternal lineages were assigned to the elusive R and ubiquitous African-T1 haplogroups found in two and ten Althiburos specimens, respectively. Our results can be explained by post-domestication hybridization of Althiburos cattle with local aurochs. However, we cannot rule out an independent domestication in North Africa considering the shared ancestry of Althiburos cattle with the pre-domestic Moroccan aurochs and present-day African taurine cattle.info:eu-repo/semantics/publishedVersio

    Investigating mitochondrial DNA relationships in Neolithic Western Europe through serial coalescent simulations

    Get PDF
    Recent ancient DNA studies on European Neolithic human populations have provided persuasive evidence of a major migration of farmers originating from the Aegean, accompanied by sporadic hunter-gatherer admixture into early Neolithic populations, but increasing toward the Late Neolithic. In this context, ancient mitochondrial DNA data collected from the Neolithic necropolis of Gurgy (Paris Basin, France), the largest mitochondrial DNA sample obtained from a single archeological site for the Early/Middle Neolithic period, indicate little differentiation from farmers associated to both the Danubian and Mediterranean Neolithic migration routes, as well as from Western European hunter-gatherers. To test whether this pattern of differentiation could arise in a single unstructured population by genetic drift alone, we used serial coalescent simulations. We explore female effective population size parameter combinations at the time of the colonization of Europe 45000 years ago and the most recent of the Neolithic samples analyzed in this study 5900 years ago, and identify conditions under which population panmixia between hunter-gatherers/Early-Middle Neolithic farmers and Gurgy cannot be rejected. In relation to other studies on the current debate of the origins of Europeans, these results suggest increasing hunter-gatherer admixture into farmers' group migrating farther west in Europe.European Journal of Human Genetics advance online publication, 28 December 2016; doi:10.1038/ejhg.2016.180

    Genetic diversity of CHC22 clathrin impacts its function in glucose metabolism

    Get PDF
    CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22’s role in metabolism and have potential to differentially influence the human insulin response

    A review on development and application of plant-based bioflocculants and grafted bioflocculants

    Get PDF
    Flocculation is extensively employed for clarification through sedimentation. Application of eco-friendly plant-based bioflocculants in wastewater treatment has attracted significant attention lately with high removal capability in terms of solids, turbidity, color, and dye. However, moderate flocculating property and short shelf life restrict their development. To enhance the flocculating ability, natural polysaccharides derived from plants are chemically modified by inclusion of synthetic, nonbiodegradable monomers (e.g., acrylamide) onto their backbone to produce grafted bioflocculants. This review is aimed to provide an overview of the development and flocculating efficiencies of plant-based bioflocculants and grafted bioflocculants for the first time. Furthermore, the processing methods, flocculation mechanism, and the current challenges are discussed. All the reported studies about plant-derived bioflocculants are conducted under lab-scale conditions in wastewater treatment. Hence, the possibility to apply natural bioflocculants in food and beverage, mineral, paper and pulp, and oleo-chemical and biodiesel industries is discussed and evaluated

    The map-1 Gene Family in Root-Knot Nematodes, Meloidogyne spp.: A Set of Taxonomically Restricted Genes Specific to Clonal Species

    Get PDF
    Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions

    In the blood: the myth and reality of genetic markers of identity

    Full text link
    The differences between copies of the human genome are very small, but tend to cluster in different populations. So, despite the fact that low inter-population differentiation does not support a biological definition of races statistical methods are nonetheless claimed to be able to predict successfully the population of origin of a DNA sample. Such methods are employed in commercial genetic ancestry tests, and particular genetic signatures, often in the male-specific Y-chromosome or maternally-inherited mitochondrial DNA, have become widely identified with particular ancestral or existing groups, such as Vikings, Jews, or Zulus. Here, we provide a primer on genetics, and describe how genetic markers have become associated with particular groups. We describe the conflict between population genetics and individual-based genetics and the pitfalls of over-simplistic genetic interpretations, arguing that although the tests themselves are reliable, the interpretations are unreliable and strongly influenced by cultural and other social forces.</p

    Inferring the Population Expansions in Peopling of Japan

    Get PDF
    Background: Extensive studies in different fields have been performed to reconstruct the prehistory of populations in the Japanese archipelago. Estimates the ancestral population dynamics based on Japanese molecular sequences can extend our understanding about the colonization of Japan and the ethnogenesis of modern Japanese. Methodology/Principal Findings: We applied Bayesian skyline plot (BSP) with a dataset based on 952 Japanese mitochondrial DNA (mtDNA) genomes to depict the female effective population size (Nef) through time for the total Japanese and each of the major mtDNA haplogroups in Japanese. Our results revealed a rapid N ef growth since,5 thousand years ago had left,72 % Japanese mtDNA lineages with a salient signature. The BSP for the major mtDNA haplogroups indicated some different demographic history. Conclusions/Significance: The results suggested that the rapid population expansion acted as a major force in shaping current maternal pool of Japanese. It supported a model for population dynamics in Japan in which the prehistoric population growth initiated in the Middle Jomon Period experienced a smooth and swift transition from Jomon to Yayoi, and then continued through the Yayoi Period. The confounding demographic backgrounds of different mtDN
    • …
    corecore