6 research outputs found

    Primary red cell hydration disorders: Pathogenesis and diagnosis

    No full text
    31st International Symposium of the International-Society-for-Laboratory-Hematology (ISLH) on Technological Innovations in Laboratory Hematology, Brussels, BELGIUM, 2018Hydration status is critical for erythrocyte survival and is mainly determined by intracellular cation content. Active pumps, passive transporters, and ion channels are the key components of volume homeostasis, whereas water passively fits ionic movements. Whenever cation content increases, erythrocyte swells, whereas it shrinks when cation content decreases. Thus, inappropriate cation leak causes erythrocyte hydration disorders, hemolytic anemia, and characteristic red cell shape abnormalities named stomatocytosis. All types of stomatocytosis either overhydrated or dehydrated are linked to inherited or de novo mutations in genes encoding ion transporters or channels. Although intracellular ion content can be assessed by experimental methods, laboratory diagnosis is guided by a combination of red blood cell parameters and deformability measurement when possible, and confirmed by sequencing of the putative genes. A better knowledge of the mechanisms underlying erythrocyte hydration imbalance will further lead to therapeutic improvements

    New KCNN4 Variants Associated With Anemia: Stomatocytosis Without Erythrocyte Dehydration

    No full text
    International audienceThe K + channel activated by the Ca 2+ , KCNN4, has been shown to contribute to red blood cell dehydration in the rare hereditary hemolytic anemia, the dehydrated hereditary stomatocytosis. We report two de novo mutations on KCNN4 , We reported two de novo mutations on KCNN4 , V222L and H340N, characterized at the molecular, cellular and clinical levels. Whereas both mutations were shown to increase the calcium sensitivity of the K + channel, leading to channel opening for lower calcium concentrations compared to WT KCNN4 channel, there was no obvious red blood cell dehydration in patients carrying one or the other mutation. The clinical phenotype was greatly different between carriers of the mutated gene ranging from severe anemia for one patient to a single episode of anemia for the other patient or no documented sign of anemia for the parents who also carried the mutation. These data compared to already published KCNN4 mutations question the role of KCNN4 gain-of-function mutations in hydration status and viability of red blood cells in bloodstream
    corecore