1,126 research outputs found

    A high resolution spectroscopic atlas of M subdwarfs - Effective temperature and metallicity

    Full text link
    Context. M subdwarfs are metal poor and cool stars. They are important probes of the old galactic populations. However, they remain elusive due to their low luminosity. Observational and modeling efforts are required to fully understand their physics and to investigate the effects of metallicity in their cool atmospheres. Aims. We perform a detailed study of a sample of subdwarfs to determine their stellar parameters and constrain the stat-of-the art atmospheric models. Methods. We present UVES/VLT high resolution spectra of three late-K subdwarfs and 18 M subdwarfs. Our atlas covers the optical region from 6400 AA up to the near infrared at 8900 AA. We show spectral details of cool atmospheres at very high resolution (R= 40 000) and compare with synthetic spectra computed from the recent BT-Settl atmosphere models. Results. Our comparison shows that molecular features (TiO, VO, CaH), and atomic features (Fe I, Ti I, Na I, K I) are well fitted by current models. We produce an effective temperature versus spectral type relation all over the subdwarf spectral sequence. Thanks to the high resolution of our spectra, we perform a detailed comparison of line profiles of individual elements such as Fe I, Ca II, Ti I, and are able to determine accurate metallicities of these stars. These determinations contribute to calibrate the relation between metallicity and molecular band strength indices from low-resolution spectra. Conclusions. This work shows that the new generation of models are able to reproduce various spectral features of M subdwarfs. Working with these high resolution spectra allowed us to disentangle the atmospheric parameters (effective temperature, gravity, metallicity), which is not possible when using low resolution spectroscopy or photometry.Comment: 15 pages, 20 figures, 2 tables, accepted for publication in Astronomy and Astrophysic

    New filamentary remnant radio emission and duty cycle constraints in the radio galaxy NGC 6086

    Get PDF
    Radio galaxies are a subclass of active galactic nuclei in which accretion onto the supermassive black hole releases energy via relativistic jets. The jets are not constantly active throughout the life of the host galaxy and alternate between active and quiescent phases. Remnant radio galaxies are detected during a quiescent phase and define a class of unique sources to constrain the AGN duty cycle. We present, a spatially resolved radio analysis of the radio galaxy associated with NGC 6086 and constraints on the spectral age of the diffuse emission to investigate the duty cycle and evolution of the source. We use three new low-frequency, high-sensitivity observations, performed with the Low Frequency Array at 144 MHz and with the upgraded Giant Metrewave Radio Telescope at 400 MHz and 675 MHz. To these, we add two Very Large Array archival observations at 1400 and 4700 MHz. In the new observations, we detect a second pair of larger lobes and three regions with a filamentary morphology. We analyse the spectral index trend in the inner remnant lobes and see systematic steeper values at the lower frequencies compared to the GHz ones. Steeper spectral indices are found in the newly detected outer lobes (up to 2.1), as expected if they trace a previous phase of activity of the AGN. However, the differences between the spectra suggest different dynamical evolution within the intragroup medium during their expansion and/or different magnetic field values. We place constraints on the age of the inner and outer lobes and derive the duty cycle of the source. This results in a total active time of \sim39%. The filamentary structures have a steep spectral index (\sim1) without any spectral index trend and only one of them shows a steepening in the spectrum. Their origin is not yet clear, but they may have formed due to the compression of the plasma or due to magnetic field substructures

    Radio continuum tails in ram pressure-stripped spiral galaxies: experimenting with a semi-empirical model in Abell 2255

    Get PDF
    Wide-field radio continuum observations of galaxy clusters are revealing an increasing number of spiral galaxies hosting tens of kpc-long radio tails produced by the nonthermal interstellar medium being displaced by the ram pressure. We present a semi-empirical model for the multi-frequency radio continuum emission from ram pressure stripped tails based on the pure synchrotron cooling of a radio plasma moving along the stripping direction with a uniform velocity. We combine LOFAR and uGMRT observations at 144 and 400 MHz to study the flux density and spectral index profiles of the radio tails of 7 galaxies in Abell 2255, and use the model to reproduce the flux density and spectral index profiles, and infer the stripped radio plasma velocity. For 5 out of 7 galaxies we observe monotonic decrease in both flux density and spectral index up to  30~30 kpc from their stellar disk. Our model reproduces the observed trends with a radio plasma bulk projected velocity between 160 and 430 km s1^{-1}. This result represents the first indirect measure of the stripped, nonthermal interstellar medium velocity. The observed spectral index trends indicate that the synchrotron cooling is faster than the adiabatic expansion losses, thus suggesting that the stripped radio plasma can survive for a few tens of Myr outside of the stellar disk. This provides a lower limit for the lifetime of the stripped ISM outside of the disk. As a proof of concept, we use the best-fit velocities to constrain the galaxies' 3D velocity in the cluster to be in the 300-1300 km s1^{-1}. We estimate the ram pressure affecting these galaxies to be between 0.1 and 2.9 ×1011\times10^{-11} erg cm3^{-3}, and measure the inclination between their stellar disk and the ram pressure wind.Comment: 15 pages, 9 figures, 5 tables. Accepted for publication on A&A on May 31st 202

    Physical insights from the spectrum of the radio halo in MACS J0717.5+3745

    Get PDF
    We present new LOFAR observations of the massive merging galaxy cluster MACS J0717.5+3745. The cluster hosts the most powerful radio halo known to date. These new observations, in combination with published uGMRT (300-850 MHz) and VLA (1-6.5 GHz) data, reveal that the halo is more extended than previously thought, with a largest linear size of 2.2Mpc\sim2.2 \rm Mpc. The halo shows a steep spectrum (α144MHz1.5GHz1.4\alpha_{144\,\text{MHz}}^{1.5\,\text{GHz}}\sim-1.4) and a steepening (α1.5GHz5.5GHz1.9\alpha_{1.5 \text{GHz}}^{5.5 \text{GHz}}\sim-1.9) above 1.5 GHz. We find a strong scattering in spectral index maps on scales of 50-100 kpc. We suggest that such a strong scattering may be a consequence of the regime where inverse Compton dominate the energy losses of electrons. The spectral index becomes steeper and shows an increased curvature in the outermost regions of the halo. We combined the radio data with \textit{Chandra} observations to investigate the connection between the thermal and non-thermal components of the intracluster medium (ICM). Despite a significant substructure in the halo emission, the radio brightness correlates strongly with the X-ray brightness at all observed frequencies. The radio-versus-X-ray brightness correlation slope steepens at a higher radio frequency (from b144MHz=0.67±0.05b_{144 \text{MHz}}=0.67\pm0.05 to b3.0GHz=0.98±0.09b_{3.0 \text{GHz}}=0.98\pm0.09) and the spectral index shows a significant anti correlation with the X-ray brightness. Both pieces of evidence further support a spectral steepening in the external regions. The compelling evidence for a steep spectral index, the existence of a spectral break above 1.5 GHz, and the dependence of radio and X-ray surface brightness correlation on frequency are interpreted in the context of turbulent reacceleration models. Under this scenario, our results allowed us to constrain that the turbulent kinetic pressure of the ICM is up to 10%.Comment: 16 pages, 12 figures, accepted for publication in A&

    Physical insights from the spectrum of the radio halo in MACS J0717.5+3745

    Get PDF
    We present new LOw-Frequency ARray observations of the massive merging galaxy cluster MACS J0717.5+3745, located at a redshift of 0.5458. The cluster hosts the most powerful radio halo known to date. These new observations, in combination with published uGMRT (300-850 MHz) and VLA (1-6.5 GHz) data, reveal that the halo is more extended than previously thought, with a largest linear size of ∼2.2 Mpc, making it one of the largest known halos. The halo shows a steep spectrum (α144 MHz1.5 GHz ∼-1.4) and a steepening (α1.5 GHz5.5 GHz ∼-1.9) above 1.5 GHz. We find a strong scattering in spectral index maps on scales of 50-100 kpc. We suggest that such a strong scattering may be a consequence of the regime where inverse Compton dominates the energy losses of electrons. The spectral index becomes steeper and shows an increased curvature in the outermost regions of the halo. We combined the radio data with Chandra observations to investigate the connection between the thermal and nonthermal components of the intracluster medium (ICM). Despite a significant substructure in the halo emission, the radio brightness correlates strongly with the X-ray brightness at all observed frequencies. The radio-versus-X-ray brightness correlation slope steepens at a higher radio frequency (from b144? MHz? =? 0.67? ±? 0.05 to b3.0? GHz? =? 0.98? ±? 0.09) and the spectral index shows a significant anticorrelation with the X-ray brightness. Both pieces of evidence further support a spectral steepening in the external regions. The compelling evidence for a steep spectral index, the existence of a spectral break above 1.5 GHz, and the dependence of radio and X-ray surface brightness correlation on frequency are interpreted in the context of turbulent reacceleration models. Under this scenario, our results allowed us to constrain that the turbulent kinetic pressure of the ICM is up to 10%

    Deep Low-frequency Radio Observations of A2256. I. the Filamentary Radio Relic

    Get PDF
    We present deep and high-fidelity images of the merging galaxy cluster A2256 at low frequencies using the upgraded Giant Metrewave Radio Telescope (uGMRT) and LOw-Frequency ARray (LOFAR). This cluster hosts one of the most prominent known relics with a remarkably spectacular network of filamentary substructures. The new uGMRT (300-850 MHz) and LOFAR (120-169 MHz) observations, combined with the archival Karl G. Jansky Very Large Array (VLA; 1-4 GHz) data, allowed us to carry out the first spatially resolved spectral analysis of the exceptional relic emission down to 6″ resolution over a broad range of frequencies. Our new sensitive radio images confirm the presence of complex filaments of magnetized relativistic plasma also at low frequencies. We find that the integrated spectrum of the relic is consistent with a single power law, without any sign of spectral steepening, at least below 3 GHz. Unlike previous claims, the relic shows an integrated spectral index of -1.07 ± 0.02 between 144 MHz and 3 GHz, which is consistent with the (quasi)stationary shock approximation. The spatially resolved spectral analysis suggests that the relic surface very likely traces the complex shock front, with a broad distribution of Mach numbers propagating through a turbulent and dynamically active intracluster medium. Our results show that the northern part of the relic is seen edge-on and the southern part close to face-on. We suggest that the complex filaments are regions where higher Mach numbers dominate the (re)acceleration of electrons that are responsible for the observed radio emission

    The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals

    Get PDF
    We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and AO imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution H-band APOGEE spectra provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and RVs for over 1400 stars spanning spectral types of M0-L0, providing the largest set of NIR M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m/s for bright M dwarfs. We present preliminary results of this telluric modeling technique in this paper.Comment: Submitted to Astronomical Journa

    Energy-Dependent Timing of Thermal Emission in Solar Flares

    Full text link
    We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We employ high-resolution X-ray spectra observed by the Si detector of the "Solar X-ray Spectrometer" (SOXS). The SOXS onboard the Indian GSAT-2 spacecraft was launched by the GSLV-D2 rocket on 8 May 2003. Firstly we model the spectral evolution of the X-ray line and continuum emission flux F(\epsilon) from the flare by integrating a series of isothermal plasma flux. We find that multi-temperature integrated flux F(\epsilon) is a power-law function of \epsilon with a spectral index (\gamma) \approx -4.65. Next, based on spectral-temporal evolution of the flares we find that the emission in the energy range E= 4 - 15 keV is dominated by temperatures of T= 12 - 50 MK, while the multi-thermal power-law DEM index (\gamma) varies in the range of -4.4 and -5.7. The temporal evolution of the X-ray flux F(\epsilon,t) assuming a multi-temperature plasma governed by thermal conduction cooling reveals that the temperature-dependent cooling time varies between 296 and 4640 s and the electron density (n_e) varies in the range of n_e= (1.77-29.3)*10^10 cm-3. Employing temporal evolution technique in the current study as an alternative method for separating thermal from non-thermal components in the energy spectra, we measure the break-energy point ranging between 14 and 21\pm1.0 keV.Comment: Solar Physics, in pres
    corecore