113 research outputs found

    Nucleosynthesis Constraints on a Massive Gravitino in Neutralino Dark Matter Scenarios

    Full text link
    The decays of massive gravitinos into neutralino dark matter particles and Standard Model secondaries during or after Big-Bang nucleosynthesis (BBN) may alter the primordial light-element abundances. We present here details of a new suite of codes for evaluating such effects, including a new treatment based on PYTHIA of the evolution of showers induced by hadronic decays of massive, unstable particles such as a gravitino. We also develop an analytical treatment of non-thermal hadron propagation in the early universe, and use this to derive analytical estimates for light-element production and in turn on decaying particle lifetimes and abundances. We then consider specifically the case of an unstable massive gravitino within the constrained minimal supersymmetric extension of the Standard Model (CMSSM). We present upper limits on its possible primordial abundance before decay for different possible gravitino masses, with CMSSM parameters along strips where the lightest neutralino provides all the astrophysical cold dark matter density. We do not find any CMSSM solution to the cosmological Li7 problem for small m_{3/2}. Discounting this, for m_{1/2} ~ 500 GeV and tan beta = 10 the other light-element abundances impose an upper limit m_{3/2} n_{3/2}/n_\gamma < 3 \times 10^{-12} GeV to < 2 \times 10^{-13} GeV for m_{3/2} = 250 GeV to 1 TeV, which is similar in both the coannihilation and focus-point strips and somewhat weaker for tan beta = 50, particularly for larger m_{1/2}. The constraints also weaken in general for larger m_{3/2}, and for m_{3/2} > 3 TeV we find a narrow range of m_{3/2} n_{3/2}/n_\gamma, at values which increase with m_{3/2}, where the Li7 abundance is marginally compatible with the other light-element abundances.Comment: 74 pages, 40 Figure

    A Bitter Pill: The Primordial Lithium Problem Worsens

    Full text link
    The lithium problem arises from the significant discrepancy between the primordial 7Li abundance as predicted by BBN theory and the WMAP baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2--3 in 7Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data, particularly the uncertainty on 3He(alpha,gamma)7Be, has reduced to 7.4%, and with a central value shift of ~ +0.04 keV barn. (2) The WMAP 5-year data now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects, and have reaped new lithium isotopic data. With these, we now find that the BBN+WMAP predicts 7Li/H = (5.24+0.71-0.67) 10^{-10}. The Li problem remains and indeed is exacerbated; the discrepancy is now a factor 2.4--4.3 or 4.2sigma (from globular cluster stars) to 5.3sigma (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key nuclear, particle, and astronomical measurements highlighted.Comment: 21 pages, 4 figures. Comments welcom

    Invasive pulmonary aspergillosis in patients with decompensated cirrhosis: case series

    Get PDF
    BACKGROUND: Opportunistic invasive fungal infections are increasingly frequent in intensive care patients. Their clinical spectrum goes beyond the patients with malignancies, and for example invasive pulmonary aspergillosis has recently been described in critically ill patients without such condition. Liver failure has been suspected to be a risk factor for aspergillosis. CASE PRESENTATION: We describe three cases of adult respiratory distress syndrome with sepsis, shock and multiple organ failure in patients with severe liver failure among whom two had positive Aspergillus antigenemia and one had a positive Aspergillus serology. In all cases bronchoalveolar lavage fluid was positive for Aspergillus fumigatus. Outcome was fatal in all cases despite treatment with voriconazole and agressive symptomatic treatment. CONCLUSION: Invasive aspergillosis should be among rapidly raised hypothesis in cirrhotic patients developing acute respiratory symptoms and alveolar opacities

    Hard X-ray emission from the Galactic ridge

    Get PDF
    We present results of a study of the Galactic ridge X-ray emission (GRXE) in hard X-rays performed with the IBIS telescope aboard INTEGRAL. The imaging capabilities of this coding aperture telescope make it possible to account for the flux from bright Galactic point sources whereas the wide field of view permits to collect large flux from the underlying GRXE. Extensive study of the IBIS/ISGRI detector background allowed us to construct a model that predicts the detector count rate with 12\sim1-2% accuracy in the energy band 17-60 keV. The derived longitude and latitude profiles of the ridge emission are in good agreement with the Galactic distribution of stars obtained from infrared observations. This, along with the measured hard X-ray spectrum of the Galactic ridge emission strongly indicates its stellar origin. The derived unit stellar mass emissivity of the ridge in the energy band 17-60 keV, (0.91.2)×1027(0.9 - 1.2)\times 10^{27}\lummass (assuming a bulge mass of 11.3×1010M1-1.3 \times 10^{10} M_\odot) agrees with that of local (in the Solar neigborhood) accreting magnetic white dwarf binaries - dominant contributors to the GRXE at these energies. In addition, the shape of the obtained GRXE spectrum can be used to determine the average mass of white dwarfs in such systems in the Galaxy as \sim0.5 M_{\sun}. The total hard X-ray luminosity of the GRXE is L1760keV=(3.7±0.2)×1037L_{\rm 17-60 keV} =(3.7\pm0.2)\times10^{37}\lum in the 17--60 keV band. At energies 70--200 keV no additional contribution to the total emission of the Galaxy apart from the detected point sources is seen.Comment: 13 pages, 19 figures, submitted to Astronomy and Astrophysic

    X-ray micro-tomography and pore network modeling of single-phase fixed-bed reactors.

    Get PDF
    A three-dimensional (3D) irregular and unstructured pore network was built using local topological and geometrical properties of an isometric bead pack imaged by means of a high-resolution X-ray computed micro-tomography technique. A pore network model was developed to analyze the 3D laminar/inertial(non-Darcy) flows at the mesoscopic (pore level) and macroscopic (after ensemble-averaging) levels. The non-linear laminar flow signatures were captured at the mesoscale on the basis of analogies with contraction and expansion friction losses. The model provided remarkably good predictions of macroscopic frictional loss gradient in Darcy and non-Darcy regimes with clear-cut demarcation using channel-based Reynolds number statistics. It was also able to differentiate contributions due to pore and channel linear losses, and contraction/expansion quadratic losses. Macroscopic mechanical dispersion was analyzed in terms of retroflow channels, and transverse and longitudinal Péclet numbers. The model qualitatively retrieved the Péclet-Reynolds scaling law expected for heterogeneous networks with predominance of mechanical dispersion. Advocated in watermark is the potential of pore network modeling to build a posteriori constitutive relations for the closures of the more conventional macroscopic Euler approaches to capture more realistically single-phase flow phenomena in fixed-bed reactor applications in chemical engineering

    Enzymatically crosslinked Tyramine-Gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint synovial inflammation, as well as cartilage and bone tissue destruction. Current strategies for the treatment of RA can reduce joint inflammation, but the treatment options still represent stability concerns since they are not sufficient and present a fast clearing. Thus, several drug delivery systems (DDS) have been advanced to tackle this limitation. Injectable gellan gum (GG) hydrogels, reduced by physical crosslinking methods, also being proposed as DDS, but this kind of crosslinking can produce hydrogels that become weaker in physiological conditions. Nevertheless, enzymatic crosslinking emerged as an alternative to increase mechanical strength, which can be adjusted by the degree of enzymatic crosslinking. In this study, tyramine-modified gellan gum (Ty-GG) hydrogels were developed via horseradish peroxidase (HRP) crosslinking; and betamethasone was encapsulated within, to increase the specificity and safety in the treatment of patients with RA. Physicochemical results showed that it was possible to modify GG with tyramine, with a degree of substitution of approximately 30%. They showed high mechanical strength and resistance, presenting a controlled betamethasone release profile over time. Ty-GG hydrogels also exhibited no cytotoxic effects and do not negatively affected the metabolic activity and proliferation of chondrogenic primary cells. Furthermore, the main goal was achieved since betamethasone-loaded Ty-GG hydrogels demonstrated to have a more effective therapeutic effect when compared with the administration of betamethasone alone. Therefore, the developed Ty-GG hydrogels represent a promising DDS and a reliable alternative to traditional treatments in patients with RANorte2020 project (“NORTE-08-5369-FSE-000044”), REMIX project (G.A. 778078 — REMIX — H2020-MSCA-RISE-2017), and Gilson Lab, Chonbuk National University, Republic of Korea. The FCT distinction attributed to J. Miguel Oliveira under the Investigator FCT program (IF/01285/2015) is also greatly acknowledged. C. Gonçalves also wish to acknowledge FCT for supporting her research (No. SFRH/BPD/94277/2013

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p&nbsp;&lt;.001. Over 24&nbsp;months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10&nbsp;ml/min/1.73&nbsp;m2 decrease), that was most notable in patients with eGFR &lt;30&nbsp;ml/min/1.73&nbsp;m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≥90&nbsp;ml/min/1.73&nbsp;m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF
    corecore