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a b s t r a c t

A three-dimensional (3D) irregular and unstructured pore network was built using local topological and

geometrical properties of an isometric bead pack imaged by means of a high-resolution X-ray computed

micro-tomography technique. A pore network model was developed to analyze the 3D laminar/inertial

(non-Darcy) flows at the mesoscopic (pore level) and macroscopic (after ensemble-averaging) levels.

The non-linear laminar flow signatures were captured at the mesoscale on the basis of analogies with

contraction and expansion friction losses. The model provided remarkably good predictions of macro-

scopic frictional loss gradient in Darcy and non-Darcy regimes with clear-cut demarcation using chan-

nel-based Reynolds number statistics. It was also able to differentiate contributions due to pore and

channel linear losses, and contraction/expansion quadratic losses. Macroscopic mechanical dispersion

was analyzed in terms of retroflow channels, and transverse and longitudinal Péclet numbers. The model

qualitatively retrieved the Péclet-Reynolds scaling law expected for heterogeneous networks with pre-

dominance of mechanical dispersion. Advocated in watermark is the potential of pore network modeling

to build a posteriori constitutive relations for the closures of the more conventional macroscopic Euler

approaches to capture more realistically single-phase flow phenomena in fixed-bed reactor applications

in chemical engineering.
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1. Introduction

Pore network modeling is a remarkably powerful approach

which allows linking pore-level transport phenomena to the mac-

roscale flow behavior in porous media [1]. Since its inception with

the seminal works by Fatt [2], the literature on pore network mod-

eling has been growing at a phenomenal rate and, hitherto, has im-

posed itself as a key branch of research on porous media. The

breadth of possibilities allowed by pore network modeling extends

from procurement of upscaled intrinsic and relative permeabilities

[3–5], estimation of hydrodynamic dispersion and mass transfer

with or without phase changes [1,6–9], and simulation of quasi-

equilibrium and non-equilibrium drainage and imbibition dynam-

ics [10,11], to name just a few topics.

It is the advent of spatially-resolved imaging techniques, such

as X-ray computed micro-tomography, that has thrust the capabil-

ities of network modeling to new heights [1]. Nowadays, these

techniques enable imaging the 3D pore space of actual porous

media with routine spatial resolutions down to a micron [12].

Topologically equivalent backbones are then extracted whereby

the irregular poral space is represented in the form of bonds and

nodes to which volumes, areas, lengths, and shapes are assigned

to mimic the detailed 3D images. Hence, the level of scrutiny, in

its default assertion, is meant to depict mesoscale (or pore-level)

physics in accordance with which network modeling relies on a

collection of simple physical rules, e.g., mass, momentum and en-

ergy balances, tinged with the local topological and geometrical

attributes belonging to each individual pore. Often, pore network

modeling refers to instances where the microscale inner-pore-level

information is either forgone or compressed in the averaging pro-

cesses – e.g., in the form of shape factors, flow rates in idealized

channel geometry, etc. In this regard, pore network modeling

bridges the gap between the macroscopic volume-average multi-

fluid Euler approaches that necessitate a priori knowledge of con-

stitutive relationships [13–16], and the higher-rank CPU-intensive

simulation methods, such as lattice Boltzmann [17], smoothed

Nomenclature

Aij channel friction loss per unit length, Pa/m
C0 laminar constant (Eq. (11)), –
Cij contraction friction loss, Pa
D0 laminar constant (Eq. (12)), –
d particle diameter, m
Eij expansion friction loss, Pa
Euij channel ij Euler number, –
e bed porosity, –
g gravitational acceleration, m/s2

Lij center-of-mass distance between two adjacent pores,
m

lij equivalent channel length, m
m curvature parameter (Eq. (12)) or number of channels

entering a given pore, –
Nc total number of channels, –
Np total number of pores, –
n curvature parameter (Eq. (11)), –
PF network feed pressure, Pa
PE network exit pressure, Pa
p’i channel static pressure from pore i side, Pa
Pi pore i static pressure, Pa
}i pore i total head, Pa
PeL longitudinal channel Péclet number, hvcai/hvcai, –

(same formalism for pore)
Q cumulative (feed) flow rate, m3/s
p number of channels leaving a given pore, –
qij channel ij volumetric flux, m3/s
Rebed bed (or particle) Reynolds number, qVsd/(1 ÿ e)l, (as in

traditional definition of packed-bed friction factor-Re
correlations), –

Reij channel ij Reynolds number (Eq. (13)), –
ri pore i radius, m
rcij channel ij constriction radius, m
recij channel ij effective constriction radius, m
rminij channel ij minimum throat radius, m
Ua directional unit vector of pore flow (Eq. (27)), –
Vs superficial velocity, m/s
vij channel ij interstitial velocity (Eq. (28)), m/s
hvcai ensemble-average channel (a = x, y, z) velocity compo-

nent, m/s
hv 0

cai ensemble-average channel (a = x, y, z) root-mean-
square velocity component, m/s

hvpai ensemble-average pore (a = x, y, z) velocity component,
m/s

hv 0
pai ensemble-average pore (a = x, y, z) root-mean-square

velocity component, m/s
(xi,yi,zi) pore i center-of-mass coordinates, m

Greek
Cyÿ lower network domain exit boundary
Cy+ upper network domain entrance boundary
c0[cs0[c1 constriction contour
c1[cs1[c2 channel contour
c2[cs2[c3 expansion contour
Dx spatial resolution, lm
dj pore j multiplier, –
eij channel ij expansion friction loss factor, –
jij channel ij contraction friction loss factor, –
l fluid viscosity, Pa s
q fluid density, kg/m3

r standard-deviation, Table 1
/ volumetric flux objective function vector, m3/s

Subscript
c channel
E exit
F feed
L longitudinal
p pore
T transverse

Superscript
0 relative to channel
— volume average operator (Eq. (23))
(i)? leaving pore i (Eq. (26))
_ vector entity
= matrix entity

Acronym
hi ensemble-average operator
3D(2D) three (two) dimensional
COV coefficient of variation, Table 1
CSTR continuous-stirred tank reactor



particle hydrodynamics [18], level set [19], or volume-of-fluid [20–

22] methods, which are tractable only at a restricted level of a few

pores or for simplified configurations [1]. Pore network modeling is

therefore the tool of choice to build a posteriori the constitutive

relations needed for the description of macroscale flows in porous

media, provided the essential features of these latter, borne in

topologically equivalent networks, are affordable from highly-re-

solved 3D visualizations of the pore space.

Specific interest for porous media in chemical engineering

firmly rests on a tremendous reliance on fixed-bed reactors which

are the work horse of the chemical process industry. Remarkable

examples comprise wall-cooled multi-tubular reactors, staged

adiabatic beds integrated with heat exchangers/regenerators,

simulated moving-bed adsorbers and myriad other applications

[22–25]. Despite a vast body of literature which treats fixed bed

key issues, such as flow patterns, wall heat transfer coefficients,

interphase (fluid to particles) heat and mass transfer [26], studies

continue in this area with uninterrupted progress due to their

technological importance. Non-Darcy flows are a special class of

single-phase flows through porous media which have received

extensive coverage in the literature due to their importance partic-

ularly in petroleum, in reservoir and in chemical engineering

[27–32]. Antagonizing Darcy flows, they take place at high fluid

velocities whereby the surge of inertial forces leads to sizeable

deviations from (Darcy’s law) linear flow rate-pressure gradient

dependence. Ergun- or Forchheimer-like relations are the non-

Darcy approximations par excellence of the macroscale momentum

balance for single-phase flow in porous media [31]. Often, their

structure is assumed a priori and where their linear and quadratic

constants are adjusted to match macroscopic frictional pressure

drop-flow rate measurements. Such practice remains however

clueless as regards the link between fluid flow and the specific

micro/mesoscale structures of the porous medium. Hence, concep-

tual works gradually emerged to capture, more or less with limited

success, the microscopic origins of non-Darcy flows based on

assumptions as diverse as capillary-orifice [33], representative unit

cell [34–36], diverging-converging [37], and disordered porous

media [38]. Upscaling techniques were used to understand more

fundamentally departures from Darcy’s law. If the pore-scale Rey-

nolds number is in the limit of zero, there is a consensus between

the different techniques (e.g., homogenization theory, volume

averaging) on the emergence of a full anisotropic Darcy’s law with

so-called closure problems allowing access to the permeability

tensor from the micro-structure [39,40]. An increase in the Rey-

nolds number leads to the following sequence. First, small depar-

ture from Darcy’s law, hereafter denoted as the weak inertia

regime, starts with a cubic correction contrary to the quadratic

modification in the classical form of Forchheimer’s law [30,41–

43]. When the Reynolds number increases further strong inertia

effects start to produce some effects. Forms of the macro-scale

equations were obtained for strong inertia effects long before

truly-established pore-scale turbulence. The macroscale equation

obtained by Whitaker [44] has a non-linear additional inertia term

under the form of a generalized Forchheimer term: a fully aniso-

tropic and non-linear tensor, for which a closure problem exists,

that is multiplied by the filtration velocity. The correction is not

necessarily quadratic as illustrated in Lasseux et al. [43]. Indeed,

in the case of simple representative unit cells or so-called non-

disordered media, the weak inertia cubic correction may hold for a

large range of Reynolds number and the classical quadratic form is

not a very good approximation and anisotropic effects due to the

velocity orientation are strong. In this same work, things go better

in favor of a quadratic correction when using highly disordered unit

cells or randomly distributed arrays as thoroughly discussed in the

recent work by Yazdchi and Luding [45]. When one increases

the Reynolds number, true turbulence begins to appear at the

pore-scale, thus allowing to treat the upscaling problem in two

sequential upscaling steps: the first one to get a pore-scale turbulent

model (e.g., RANS), the second step a volume averaging of the turbu-

lent equations [14,46,47]. This stage is beyond the scope of this

work; however, it is interesting to notice that, if one takes Navier–

Stokes equations with a spatially distributed turbulent viscosity, then

the volume averaged equation has the form of the generalized

Forchheimer equation proposed in Whitaker [44]. Application of

the theory to structured packings suggests a non-quadratic correc-

tion for a wide range of Reynolds numbers consistent with the find-

ings of Lasseux et al. [43] for non-disordered media.

Only a few studies have hitherto focused on descriptions of

non-Darcy flows with recourse to pore network modeling. Thauvin

and Mohanty [48] were the first to implement a computer-gener-

ated regular hexa-coordinated cubic lattice to test the effect of con-

verging–diverging pore segments, pore connectedness, and

distribution of pore sizes. Topology of such a network was quite

afar from realistic unstructured and irregular networks [1,49].

Using simplified contraction/expansion/bend friction loss factors

applicable for fully-turbulent flows, these authors reconstructed

pressure gradient with quadratic velocity dependence in qualita-

tive agreement with Ergun/Forchheimer expressions. In further ef-

forts, Wang et al. [50] altered the above regular lattice network via

size-induced, connectivity-induced and spatial correlation-in-

duced anisotropy to approach the behavior of actual unstruc-

tured/irregular networks. 2D networks of cylindrical pipes with

randomly generated sizes were also computer-generated by Lao

et al. [51] to represent a porous medium. Quadratic velocity effects

formally similar to those used by Thauvin and Mohanty [48] and

Wang et al. [50] were evidenced at the pore splitting as mostly

responsible for non-Darcy flow behavior. It is noteworthy that

these approaches implemented asymptotic turbulent limits of

the contraction and expansion loss coefficients given by Bird

et al. [52] which are not valid for channel Re < 104. Along the same

vein of 2D statistical networks, Martins et al. [53] recently pro-

posed an approach based on the same incompatible assumption

of turbulent correlations in laminar flow regime. Therefore, recov-

ery in the macroscopic forms of the local quadratic terms is merely

pleonastic and not consistent with non-turbulent non-Darcy flow

deviations. As a matter of fact, non-Darcy flows occur at bed Rey-

nolds numbers as low as ca. 10 [54] while inception of turbulence

in porous media – consisting of mm-sized bead packs – requires

bed Reynolds numbers >600 [55]. Therefore, it is unlikely that tur-

bulent flows would prevail in the pore-network channels under

typical porous media operation. Balhoff and Wheeler [56], on the

principle, cleverly addressed this limitation by implementing a fi-

nite element method and then fitting empirical functions between

poral pressure drop and flow rate. However, the laminar Navier–

Stokes equations were solved by approximating pore throats as

symmetrical sinusoidal ducts, that is by imposing as a geometrical

simplification equal distances (and channel radii) up and down-

stream of the pinch. This simplification may not accurately capture

the actual intrinsic lack of symmetry in local throat geometry.

Hence, more representative closures of non-turbulent non-linear

dissipations at pore-throat-pore junctions must be built and tested

in pore network simulations.

Our study’s main objective will be to investigate qualitatively

and quantitatively non-Darcy single-phase flow for real unstruc-

tured and irregular three-dimensional networks. To reach our goal,

the following methodology will be pursued throughout this work:

(i) implement micro-tomography measurement of a randomly

packed non-consolidated porous medium consisting of isometric

mm-size spheres; (ii) extract a pore network with its thorough

topological and geometrical characterization; (iii) establish rigor-

ous mesoscopic mechanical energy balances and formulate repre-

sentative constitutive laws for pore-throat-pore flows; (iv) define



and compute the upscaled variables for an evaluation of the porous

medium macroscopic behavior; (v) assess the contribution of qua-

dratic dissipation and its distinction from acceleration/decelera-

tion effects at pores entrance and exit; (vi) quantify the

contributive components to the macroscopic frictional head loss

gradient; and finally (vii) analyze the influence of network hetero-

geneity on mechanical dispersion.

2. Experimental

2.1. Imaging & reconstruction

A sample porous medium was prepared by packing monodis-

perse 4-mm spherical glass beads in a small container with an over-

all bed porosity of 36 %. The actual three-dimensional (3D) pore

structure of the thus realized porous specimen, with air occupying

its interstices, was imaged using X-ray computed l-tomography.

The IFPEN X-ray Phoenix Nanotom high-resolution facility was

used to generate as many two-dimensional (2D) projections as nec-

essary by rotating the X-ray source around the specimen being im-

aged. Angular increments as narrow as 0.2° are easily achievable

yielding up to 1800 projections for a 360° sweep to enable high-res-

olution numerical reconstruction of the volumetric data. The 2D

projections consisting of 2304 � 2304 pixels were detected on a

110 � 110 mm2Hamamatsu flat detectorwith a 50 lmstep excited

under tube voltage bias and current of ca. 90 kV and 170 lA, respec-
tively. Beam hardening effects were corrected using metal Cu filter

and post-facto corrections during reconstruction [57]. After com-

pleting data acquisition, the projections were stacked and post-pro-

cessed using a cone-beam Feldkamp algorithm [58] to reconstruct

high-resolution gray-level density maps of the 3D domain. The size

of the reconstructed domain was 3.06x � 2.76y � 3.04z cm
3 with a

unitary resolution voxel Dx � Dy � Dz = 403 lm3 and a 3D image

composed of 765 � 690 � 760 voxels.

2.2. Extraction of pore network

A pore network extraction methodology was subsequently ap-

plied to convert the 3D density maps into resolved pore space

[57]. It enabled partition of poral space into pore bodies, pore

throats, channel lengths, and pore–pore connectivities. Conversion

of 3D maps went through the following 4-step procedure: segmen-

tation, skeletonization, pore space partitioning (and throat detec-

tion) and parameters extraction.

Segmentation was implemented to resolve the inter-granular

void voxels from their solid phase (material) counterparts. For im-

age segmentation, trial-and-error thresholding was applied on the

gray-level frequency distributions to resolve local porosity [57]. A

binarization process of grey levels was adopted ascribing unit

porosity to void space and nil porosity to solid phase. Subsequent

to thresholding, filtering (removal of islands) and morphological

operations (smoothing, shrinking and growing) were imple-

mented. A binary 3D image of each phase (solid and void) was gen-

erated giving access to local void volumetric fraction and spatial

distribution. Fig. 1 exposes the complex topology of the recon-

structed void space imprinted by randomly filling the domain with

4-mm glass beads. This void already highlights reminiscences of

pores and throats to be resolved in the later steps by extracting

ad hoc pore network topological and geometrical parameters.

As a subsequent post-processing step, skeletonization of the

segmented domain was obtained by generating a skeleton of the

porous medium from interconnecting the void space voxels using

an extraction algorithm. Originally developed for extracting brain

microcirculation networks [59,60], this algorithm implements dis-

tance ordered homotopic thinning and was extended to network

extraction of pore space in rock analyses [57,58,61]. The algo-

rithm’s output, in this latter outgrowth, enabled building a dis-

tance map to assign to each voxel of the skeleton a minimum

distance to the void space boundary.

A pore space partitioning algorithm was then used to map the

void space from the skeleton network into nodal throat-sharing

pores inter-connected via channels [57]. The algorithm main tasks

consisted in (a) identifying the lines describing channels, detecting

and locating throat points, (b) partitioning and labeling the skele-

ton into groups of lines pertaining to the same pore bodies, and (c)

reconstructing and separating the labeled pore bodies using a vox-

el growth constrained algorithm.

To allow flow computations, the final step of the pore network

extraction methodology enabled assigning topology and geometry

metrics to the pore space resolved in terms of pore volumes, throat

surfaces and lengths. This was made possible upon evaluation of

the following quantitative parameters from the 3D pore space

images:

(a) Pore-i body: It is objectified by its volume evaluated from a

voxel-growth constrained algorithm and its center of mass

(xi, yi, zi), CoM. In terms of shape, all pore bodies in the net-

work were isomorphic and attributed a common spherical

shape. Hence each pore radius, ri, is that of the equivalent

isovolume sphere.

(b) Connectivity of pore bodies: It is evaluated in terms of a

coordination number, i.e., number of adjacent pores inter-

connected to pore-i body via its peripheral throats.

(c) Pore throat radii: Two properties are evaluated for intersect-

ing pores i and j along channel ij to characterize, respec-

tively, the minimum radius, rminij, of each throat and a

constriction radius, rcij, based on the ratio of throat cross-

section area to its perimeter. The minimum radius corre-

sponds to the largest collapsible sphere to be inscribed in

the throat cross section whereas circularly shaped throats

are assumed in calculating rcij. Moreover, throats, in a first

approximation, are viewed as 0-volume constrictions

despite they are endowed with channel lengths as a

Fig. 1. Three-dimensional reconstruction of the porous parallelepipedic specimen

(consisting of 4-mm glass beads) sampled using 2D microtomography scans.



necessary condition to give rise to regular inter-pore pres-

sure drop terms. Thus all the volume content will be

assigned to poral bodies.

(d) Hydrodynamic channel length: It is that of an equivalent

cylindrical channel extending back and forth around throat

ij. Actual channels, as unveiled from Fig. 1, are not cylindrical

but rather of a biconical (converging–diverging) shape. Thus,

to capture in a more representative manner the flow hydrau-

lics and corresponding regular pressure drop in the connect-

ing channel, actual channels can be approximated by a series

of ‘‘telescopic’’ elementary (voxel-thick) sheets of variable

radii stacked perpendicularly to rminij and extending around

the throat locus, rminij [57]. Assumption of Poiseuille depen-

dence between elementary sheet conductance, sheet radius

rk and thickness lk, enables determining the equivalent cylin-

drical channel length as follows:

lij ¼
X

k

lk
rmin;ij

rk

� �4

ð1Þ

Fig. 2a and b are 3D illustrations of the pore network extracted

using the above methodology. The specificities of the bead pack are

clearly represented in terms of pore connectivities, throat lengths

and radii, and pore bodies as depicted by their isovolume spherical

proxies in Fig. 2b.

2.3. Network topology and geometry

Fig. 3a–f depict the frequency and cumulative distributions of,

respectively, pore connectivity, angular tilt of channel (from incli-

nation of CoM line of connected pore pairs), pore radius, constric-

tion radius, rcij, minimum constriction radius, and equivalent

cylindrical channel length extracted from the binary images. The

main topology and geometry descriptors of the pore network are

summarized in Table 1 in terms of average, standard deviation

and coefficient of variation (COV) figures. The total void volume re-

trieved from Fig. 3a cumulative volume frequency distribution of

Fig. 2a pore network domain amounted to a computed overall

bed porosity of 37.3%.

The pore space was composed of Np = 1213 pores connected

through throats via Nc = 2475 channels. The average values of pore

radius, constriction radius, minimum constriction radius, equiva-

lent channel length and connectivity amounted, respectively, to

1.06 mm, 0.46 mm, 0.13 mm, 0.93 mm and 4.1. The rcij/ri ratios

spanned the range [8.78 � 10ÿ3–1.0] with an average ratio of

0.41. It should be noted that for a few instances (35 out of 2475)

a small range of the rcij/ri distribution exceeded the upper physical

limit of 1. This was attributed to artifacts either in image recon-

struction or in pore network extraction. Those instances were kept

in the ensemble but their rcij/ri ratios were reduced to one. Simi-

larly, the lij/rcij ratios swept the range [0.17–94.4] with an average

length-to-radius ratio of 2.68. As regards the channel inclinations,

they were computed on the basis of the connecting pore body cen-

troids. Channel tilts displayed a bell-shape curve where close-to-

vertical channels outnumber the distribution as seen in Fig. 3b.

The pore network model requires minimally doubly-coordi-

nated pores for fluid flow simulations. In Fig. 3a, the distributions

of coordination are expressed in terms of number and void volume

fractions. Very few pores, ca. 2.1% (number percent), were highly

coordinated from 12 to 20 and contributed ca. 5.9% of the bed

porosity. At the opposite side of the spectrum, 3.0% of the pores

were singly-coordinated. Accounting for a tiny 0.14% bed porosity,

they were disseminated both in the domain core and alongside its

boundaries. However, those in the core were considered as orphan

pores and were ignored in the flow simulations. Doubly-coordi-

nated pores sharing channels with orphan pores were likewise dis-

abled. All flow-forbidding pores accounted for only 0.16% of the

bed overall porosity. However, a large proportion of pores, i.e.,

71.7%, displayed 2–4 coordinations contributing 13% of the bed

porosity (Fig. 3a). Topologically, the obtained pore network is a

3D irregular unstructured network [49]. Indeed, the network fea-

tures an irregular coordination pattern (Fig. 3a) with multiple ori-

entations of throats deviating from the three principal directions of

a regular lattice; thus the network unstructured character. Also,

due to large disparities in pore sizes, the pore centers of mass can-

not be located on equally-spaced lattice nodes; thus the network

irregular character.

Most of the peripheral pore bodies located at the domain en-

trance (Cy+) and exit (Cyÿ) boundaries are interconnected to other

peripheral pore bodies, in addition to being coordinated to some

inner (core) pore bodies (Fig. 4a and b). Such interconnectedness

enables cross-flows to occur among pores located on the same

boundary. The vast majority of boundary pore bodies (ca. 98–

99%) were coordinated to nearby boundary pore bodies by

Fig. 2. 3D representation of the pore network in terms of pore connectivities, throat radii and lengths (a) and pore volumes of equivalent spheres (b).



involving up to 7 connections. This peculiarity must not be ignored

in formulating the pore network boundary conditions.

3. Theory

3.1. Mesoscopic mechanical energy and mass balances in pore-throat-

pore elements

Relations need to be built for expressing the dependence be-

tween the fluid volumetric fluxes across the pore network constric-

tions and the associated head losses stemming from the transit of

fluid between the throat-subtending pores. These relations will be

elaborated on the basis of zonal mesoscopic mechanical energy

balances for incompressible flows performed on each pore (i)-

throat (ij)-pore (j) element of the pore network as depicted in

Fig. 5a. The interconnected pores, represented by their isovolume

spherical proxies, communicate through a circular and volumeless

throat, the equivalent length of which is given by the hydrody-

namic channel length, lij, introduced earlier. A flow is assumed to

prevail in this geometry where for a given fluid volumetric flux,
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qij, a pressure profile develops as a result of the dissipations under-

gone in the contraction, the throat and the expansion, Fig. 5a and b.

Depending on the network microstructure which regulates the

resistance to flow in the neighborhood of the pore-throat-pore ele-

ment, both flowmodalities, namely, descending and ascending, are

plausible at the pore-throat-pore level. Regardless of the local

direction of flow, the total head losses are computed as the total

head from upstream pore i minus that for downstream pore j. Such

a convention implies that head losses take positive values which-

ever flow modality. To handle the two possible flow modalities,

the sign of yi–yj determines the relative position of upstream pore

i vis-à-vis downstream pore j. Moreover, fluid state in the pore is

isobaric except in the vicinity of the contraction and expansion

at the throat junction whereby singular pressure drops may arise

at sufficiently high Reynolds numbers (Fig. 5b).

Table 1

Summary of network topology and geometry descriptors.

< > r COV (–)

Pore radius (mm) 1.06 0.43 0.40

Pore volume (mm3) 7.80 11.2 1.43

Inter-pore CoM distance (mm) 3.09 1.37 0.44

ri/rj (–) up-to-downstream 1.48 1.07 0.72

Coordination number (–) 4.1 2.5 0.60

Throat radius (mm) 0.46 0.22 0.48

Equivalent channel length (mm) 0.93 0.41 0.45

rcij/ri (–) upstream pore 0.37 0.20 0.55

rcij/rj (–) downstream pore 0.45 0.23 0.51

Throat aspect ratio, lij/rcij (–) 2.68 3.19 1.19

h i = average; r = standard deviation; COV = coefficient of variation = r/h i.
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In the contraction zone (Fig. 5c), the fluid control volume is

delineated by the contours c0[cs0[c1 to include the friction losses

due to contraction as the fluid is about to engulf into the throat.

Constriction contour is likewise deployed to encompass the

c1[cs1[c2 region to grasp the linear laminar dissipation of

Poiseuille flow in a cylindrical tube. Finally, the expansion zone

consists of c2[cs2[c3 contour to circumscribe the throat discharg-

ing flow. This zone causing friction losses due to expansion is

treated similarly to the contraction.

Linear laminar dissipation terms are accounted for in throats

and pores to reflect their contribution to the well-known Darcy

term in the overall bed pressure gradient. Likewise, quadratic ef-

fects are reminiscent of singular pressure drop stemming from

flow contraction from upstream pore to throat ij and then from

flow expansion from throat ij to downstream pore (Fig. 5). In what

follows, steady-state mesoscopic mechanical energy balance equa-

tions will be written for each zone of the pore-throat-pore ele-

ments, while in a subsequent step, the needed closure relations

will be established.

Fluid mechanical energy balance in c0[cs0[c1 contraction:

v
2p2

qq3
ij

1

r4i
ÿ

1

r4cij

 !

þ qgqijðyi ÿ y0iÞ þ qijðPi ÿ p0
iÞ ÿ Cijqij ¼ 0 ð2Þ

The constant v in Eq. (2) results from expressing the bracketed

(average) cubic velocity by the corresponding cube of bracketed

(average) velocity. It varies between 2 (laminar parabolic profile)

and 1 (nearly flat turbulent velocity profile) and is taken to be

the same for the pore and the throat. Also, Cij stands for the con-

traction frictional losses at entering pore i.

Fluid mechanical energy balance in c1[cs1[c2 throat:

ð3Þ

In Eq. (3), Aij is the frictional loss contributed by the throat fluid

flow, the expression of which for a circular throat is straightfor-

ward to derive:

Aij ¼
8

p

lqij

r4cij
ð4Þ

Fluid mechanical energy balance in c2[cs2[c3 expansion:

v
2p2

qq3
ij

1

r4cij
ÿ

1

r4j

 !

þ qgqijðy
0
j ÿ yjÞ þ qijðp

0
j ÿ PjÞ ÿ Eijqij ¼ 0 ð5Þ

In Eq. (5), Eij is the expansion frictional loss at exiting pore j.

In the total head are embedded the velocity head (or kinetic en-

ergy), elevation head (gravitational force) and static pressure. The

fluid total head for any pore i is defined as:

}i ¼
v

2p2

qq2
ij

r4i
þ qgyi þ Pi ð6Þ

Combining Eqs. (2)–(5) and after dividing by qij yields an

expression for the total head loss across the pore-throat-pore

assemblage:

}i ÿ }j ¼ Aijlij þ Cij þ Eij ð7Þ

Pore-level mesoscopic mass balance equations are also needed

for evaluating the poral pressure field. Casting Krichhoff’s current

law for the fluid around pore i, one obtains:
X

k

qik ¼ 0 ð8Þ

where in Eq. (8), the (positive) fluxes leading into pore i from an up-

stream pore k are discriminated from those (negative) leading out

of pore i into a downstream pore k. Such directional behavior of

fluxes also accounts for the fact that not all throats in the network

will discharge in a descending manner, despite prevalence of a mac-

roscopic downflow. Hence, whether the least penalizing flow across

throat is upwards or downwards, the model handles local descend-

ing and ascending instances alike.

3.2. Constitutive equations for contraction and expansion friction loss

factors

Contraction frictional losses, Cij, are expressed for fluid displace-

ment from upstream pore i to throat ij by introducing friction loss

factors jij to account for c0/c1 areal reductions, Fig. 5c. Similarly,

expansion frictional losses, Eij, are cast in terms of fluid motion

from throat ij to downstream pore j via friction loss factors eij for
consideration of c2/c3 areal increases. These expressions are de-

rived by analogy with traditional single-phase flow formulations

for obstacles contributing to friction losses. Friction losses are writ-

ten as a proportionality function of velocity head in the throat and

a friction loss factor (Table 2). Considering the range of velocities in

porous media, friction loss factors must be constructed to encom-

pass linear laminar, laminar inertial and eventually turbulent flows

depending on pore-throat areal ratios and throat Reynolds num-

bers. Hence, the contraction and expansion friction losses have

been constructed to preserve asymptotic consistency both at

creeping and turbulent flow limits using friction loss factor dat-

abases tabulated in Idel’chik [62] for contraction and expansion

flows. Passages from upstream pore to throat and from throat to

discharging pore are treated as sharp areal transitions. Table 2

summarizes the ensemble of relations derived for single-phase

flow in the pore network.

3.3. Network boundary conditions

Fig. 6 sketches the boundary condition approach adopted to

handle the top feed and bottom exit fluid streams traversing the

pore network. The exit pressure PE is assumed to be known a priori,

whereas the cumulative fluid flow rate, Q, is imposed at the en-

trance in a downflow setting along the y direction. As discussed

above, channels of varying constriction radii and lengths link

boundary pore bodies to each other (dotted lines, Fig. 6) enabling

pressure-driven flows to take place among them. Peripheral pores

will thus adjust individually their pore pressures along Cy+ bound-

ary depending, among other variables, on the fraction of flow rates

received from the feed manifold (viewed as an entrance mega-

pore) positioned atop at elevation yF and wherefrom the total pay-

load is delivered at a constant feed pressure, PF. Likewise, the pore

bodies occupying Cyÿ boundary deliver their fractional flow rates

to an exit receptacle (viewed as an exit mega-pore) located at

Table 2

Expressions of contraction/expansion friction loss factors.

Contraction friction loss from pore i to throat ij

Cij ¼
q

2p2

q2
ij

r4
cij

jij
(9)

Expansion friction loss from throat ij to pore j:

Eij ¼
q

2p2

q2
ij

r4
cij

eij
(10)

Contraction friction loss factor from pore i to throat ij:

jn
ij ¼

C0

Reij

� �n
þ 1

2n 1ÿ
r2
cij

r2
i

� �n (11)

Expansion friction loss factor from throat ij to pore j:

emij ¼ D0

Reij

� �m
þ 1ÿ

r2
cij

r2
j

� �2m (12)

Throat-based Reynolds number:

Reij ¼
2
p
qqij
lrcij

(13)



elevation yE kept at a known exit pressure PE (Fig. 6). The remain-

ing 4 faces of the pore network are impervious to fluid lateral leak-

ages. Kirchhoff’s law is then applied such that the algebraic sum of

fluxes meeting at each pore of the network is zero. Feed/exit mal-

distribution due to some dysfunctional inlet or outlet pores, e.g.,

pore plugging, can optionally be simulated by defining boundary

condition pore multipliers, dj, as shown in Eqs. (14)–(19) below.

Flux conservation around feed manifold and exit receptacle:

Q ÿ
X

j2Cyþ

djðFÞqðFÞj ¼ 0; djðFÞ ¼
0 pore inlet blocked

1 otherwise

�

ð14Þ

Q ÿ
X

j2Cyÿ

djðEÞqðEÞj ¼ 0; djðEÞ ¼
0 pore exitblocked

1 otherwise

�

ð15Þ

where q(F)j and qE(j) are the flow rates in the virtual channels, where-

in only laminar dissipation occurs, which connect boundary pores j

(belonging to boundary Cy+ or Cyÿ) to feed or exit mega-pore:

qðFÞj ¼
pr4Cyþ ;j

ðPF ÿ PCyþ ;j þ qgðyF ÿ yCyþ ;j
ÞÞ

8lðyF ÿ yCyþ ;j
Þ

ð16Þ

qðEÞj ¼
pr4Cyÿ ;j

ðPCyÿ ;j ÿ PE þ qgðyCyÿ ;j
ÿ yEÞÞ

8lðyCyÿ ;j
ÿ yEÞ

ð17Þ

Flux conservation around pore j belonging to boundary Cy+

(respectively, Cyÿ) interconnected to m in-flow and p out-flow

pores:

djðFÞqðFÞj þ
X

m

k¼1

qkj ÿ
X

p

l¼1

qjl ¼ 0 ð18Þ

ÿdjðEÞqðEÞj þ
X

m

k¼1

qkj ÿ
X

p

l¼1

qjl ¼ 0 ð19Þ

3.4. Averaging procedure

The pore network simulation outputs consist of primary local-

scale variables such as (pore scale) static pressures or total heads,

and (channel scale) fluxes or velocity vectors. Secondary local

variables can also be defined; for instance, pore scale fluxes or

velocity vectors. Macroscopic analogs can be derived from averag-

ing these local variables over boxes extendable to comprise the en-

tire network domain. Also, an overall head loss, i.e., frictional

pressure gradient across the whole network along y direction, is

obtained as the difference between the intrinsic macroscopic aver-

ages, that is the volume-average total heads at Cy+ and Cyÿ bound-

aries [11,15] divided by their average separating distance (Eq. (23),

Table 3). The gravity term hidden in the pressure head is written to

account for the whole fluid mass in the pore and not only that in

the channel; hence recourse to a pore CoM difference, yi–yj (Eq.

(6)). It will be verified later that the contribution of velocity head

to the total head is vanishingly small and that most of the total

head is due to static pressure and elevation head.

The ensemble-average channel 3D (a = x, y, z) velocity compo-

nents (hvcai) and their corresponding root-mean square velocity

(hv 0
cai) components are evaluated over the entire network domain

according to standard definitions (Eqs. (26) and (27), Table 3). In

these equations, the channel velocity components along pore-

throat-pore direction ij are related to the channel flow rate as

follows:

v ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v
2
x;ij þ v

2
y;ij þ v

2
z;ij

q

¼
qij

pr2c;ij
ð23Þ

A similar treatment applied to pore entities yields ensemble-

average velocity, hvpai, components and their corresponding

root-mean square velocity, hv 0
pai, components (Eqs. (29) and (30),

Table 3). Note that pore velocity is not a direct output of the pore

network model but requires specific hypotheses for its formula-

tion. The first rests on the fact that the fluid velocity field is a con-

tinuous function nearby the pore CoM. The second, pore velocity is

equally estimable either fromm upstream channel velocity compo-

nents entering into the pore or from p downstream channels leav-

ing the pore. Third, a velocity direction is needed within the pore.

Hence, the 3D (a = x, y, z) poral velocity components are defined

using the out-flow convention as follows where the symbol

‘‘(i)?’’ stands for the p channels leaving pore i:

vpa;i ¼

Pp
j¼1q

ðiÞ#
ij

pr2i
Ua;i ð26Þ

In this equation, Ua,i is the a-component of a unit vector dictat-

ing the flow direction within the pore. It is calculated as a throat-

flux-weighted quantity averaged over the p discharging channels

connected to pore i, see Fig. 7. For x-direction for instance, one

obtains:

Γy+i

y

δ(F)i q(F)i

Q

Ö
Γy-j

δ(E)j q(E)j

(E)xit receptacle, PE

(F)eed manifold, PF

yF

y+

y-

yE Q

Fig. 6. Channels connecting feed manifold & exit receptacle (red arrow), Cy+ & Cyÿ

boundary pore bodies (dotted line), and core pore body/ies. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version

of this article.)

Table 3

Expressions of the macroscopic entities derived from pore-level predicted properties.

Macroscopic head loss gradient

�}Cyþ ÿ�}Cyÿ

�yCyþ ÿ�yCyÿ
¼

P

j2Cyþ
r3
p;j

}j
P

j2Cyþ
r3
p;j

ÿ

P

k2Cyÿ
r3
p;k

}k
P

k2Cyÿ
r3
p;k

P

j2Cyþ
r3
p;j

yj
P

j2Cyþ
r3
p;j

ÿ

P

k2Cyÿ
r3
p;k

yk
P

k2Cyÿ
r3
p;k

(20)

Ensemble-average channel 3D (a = x, y, z) velocity components:

hvcai ¼
1
Nc

P

i;jva;ij
(21)

Ensemble-average channel 3D (a = x, y, z) root-mean square velocity

components:

hv 0
cai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nc

P

i;jðva;ij ÿ hvcaiÞ
2

q

(22)

Ensemble-average pore 3D (a = x, y, z) velocity components:

hvpai ¼
1
Np

PNp

i va;i
(24)

Ensemble-average pore 3D (a = x, y, z) root-mean square velocity

components:

hv 0
pai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Np

PNp

i ðva;i ÿ hvpaiÞ
2

q

(25)



Ux;i ¼

Pp
j¼1

q
ðiÞ#

ij

h i2

Lij
Pp

j¼1
q
ðiÞ#

ij

h i2 ðxj ÿ xiÞ

kUik
ð27Þ

where the CoM distance, Lij, and the pore directional vector, Ui, are

defined as:

Lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj ÿ xiÞ
2 þ ðyj ÿ yiÞ

2 þ ðzj ÿ ziÞ
2

q

ð28Þ

kUik
2 ¼

Pp
j¼1

q
ðiÞ#

ij

h i2

Lij
ðxjÿxiÞ

0

B

@

1

C

A

2

þ
Pp

j¼1

q
ðiÞ#

ij

h i2

Lij
ðyjÿyiÞ

0

B

@

1

C

A

2

þ
Pp

j¼1

½q
ðiÞ#

ij
�
2

Lij
ðzjÿ ziÞ

 !2

Pp
j¼1 qðiÞ#

ij

h i2

ð29Þ

Eqs. (26)-(29) above have been introduced to evaluate the mac-

roscopic mechanical dispersion of the pore network. Mechanical

dispersion as an overall outcome is contributed by the 3D convec-

tive flows occurring in channels and pores alike. In particular, pro-

vided channels with ascending flows may also form, mechanical

dispersion in the pore network will also be impacted by virtue of

retroflows in the vertical direction. Therefore, assessment of

mechanical dispersion requires knowledge in the first place of

the local scale channel (vij) and pore (vi) velocity vectors and will

be quantified in terms of Péclet numbers for hydrodynamic

dispersion.

3.5. Method of solution

The pore network model consists of Nc equations for the total

head loss (Eq. (7)) and Np flow rate equations (Eq. (8)) being inclu-

sive of the volumetric flux boundary condition equations NpCy+ Eq.

(18), and NpCyÿ Eq. (19). The boundary conditions also imply an

additional set of NpCy+ Eq. (16) and NpCyÿ Eq. (17) of flux-head loss

equations, while with the aid of Eq. (14), the feed pressure, PF, can

be determined. The pore network introduces (i) Np unknown pres-

sures + feed pressure, PF; (ii) Nc unknown network-pinned volu-

metric fluxes; and (iii) NpCy+ + NpCyÿ boundary condition fluxes.

This system of non-linear equations is therefore squared. Provision

of redundant Eq. (17) enables post-facto verification of flow rate

consistency at the exit of the network in steady state. After initial-

ization of the total head in each pore, solution of the pore network

model rests on using a Newton–Raphson algorithm at two levels.

In the first, knowing the poral total heads from current iteration

(}k), channel fluxes are obtained by solving Eq. (7) (aided with

Eqs. (4), Eqs. (9) and (10)). In the second, aggregation of these

fluxes in the mass balance equations (Eqs. (8) and (14)) yields a

vector of Np + 1 residual fluxes (objective function, /(}k), which en-

ables estimation of the Jacobian matrix, J(/(}k)), of the objective

function. A next iteration is resumed by estimating the new values

of the pore total heads as }k+1 = }
k ÿ /(}k)�Jÿ1(/(}k)). The system is

iterated until convergence is obtained on the mass conservation

equations, Eqs. (8), (14), (18), and (19), with absolute residuals at

most equal 10ÿ11 m3/s. Solution of the pore network model yields

the static pressure in each pore of the porous medium specimen

along with the volumetric fluxes in each channel. Note that Eq.

(7) restores first a head loss wherefrom taking out of static pres-

sure is straightforward. This flow field information depends on

the network topology and geometry discussed above, provided

all of which is known enables access to volume and ensemble aver-

ages (Eqs. (20)–(29)).

4. Results and discussion

4.1. Contraction and expansion friction loss factors

Fig. 8a and b are parity plots of calculated versus measured fric-

tion loss factors for sharp contraction (Fig. 8a) and sharp expansion

(Fig. 8b). Eqs. (11) and (12) in Table 2 express dependence as a

function of throat (or channel) Reynolds number and areal ratios

of contraction/expansion. As exposed in Eqs. (11) and (12) by the

different forms of the inertial/turbulent terms, contraction and

expansion cannot be viewed as symmetrical phenomena. The fric-

tional loss data were taken from Idel’chik [62] to build the required

correlations. The laminar constants C0 = 27, D0 = 26 proposed by

Idel’chik [62] were kept for the description of the viscous laminar

contributions due to, respectively, the contraction and expansion

in the adjacent pore bodies. Pure laminar flows in the contrac-

tion/expansion zones prevail as long as channel Reij < 10 (Eq.

(13), Table 2). In conjunction with the necessarily laminar dissipa-

tion taking place below this limit in the channels, macroscopic ren-

dition of laminar flows in contractions, throats and expansions is

simply the well-known Darcy’s law. For Reij exceeding 104, dissipa-

tion is governed by turbulence and the friction loss factors exhibit

asymptotic dependences with respect to contraction/expansion

areal ratios which are Reij-indifferent (Eqs. (11) and (12)). This is

tantamount to expansion/contraction friction losses obeying qua-

dratic flow rate dependences (Eqs. (9) and (10), Table 2). However,

turbulent flows are seldom attained in usual packed bed operating

conditions. Therefore, it is likely that mainly linear laminar and

laminar inertial sub-regimes would manifest at the local pore-

throat-pore scale. Early deviations from Darcy’s law therefore will

stem from (non-turbulent) quadratic terms, the manifestation of

which takes place over a wide range of Reij between 10 and 104.

In this intermediate region, there is no reason to sum up linearly

the linear laminar and turbulent asymptotes in the friction loss fac-

tors. According to Churchill and Usagi [63], a general expression of

the form borne by Eqs. (11) and (12) is more suitable to capture

curvature over the intermediate region. Therefore, only curvature

parameters n for contraction andm for expansion were fitted using

Idel’chik [62] data. It was found that n = 0.8 and m = 1.1. The qual-

ity of fit can be judged from Fig. 8a and b parity plots where the

envelopes represent twice the average absolute relative error

Fig. 7. Directional assignment of pore velocity on the basis of directions of out-flow

channels weighted by their corresponding volumetric fluxes.



between measured and calculated friction factors, i.e., 16.8% for j,
18.9% for e.

4.2. Throat effective aspect ratio

The throat circular equivalent radius introduced earlier (Fig. 3d)

ignores the Venturi-like pore-throat geometry. It would predict too

large a friction loss compared to that of actual biconical (converg-

ing–diverging) shapes. Hence to map the peculiar pore-throat

assembly, it is useful to resort to an equivalent cylindrical channel

of length lij (Fig. 3f) and effective radius recij such that the friction

loss across the pore-throat-pore assemblage would be identical

whether biconical or cylindrical throat shapes are concerned. Such

correction, namely a throat effective aspect ratio, recij/rcij, can be ob-

tained in several manners: by means of (i) approximations of the

pore-throat geometry, such as Venturi shapes [6,64]; (ii) ensem-

ble-averaging the cross-sectional areas at each position around

throat position during reconstruction as described earlier for the

determination of the equivalent cylindrical length; (iii) or alterna-

tively through one single experimental determination in the Darcy

regime of the bed pressure loss for a given volumetric flow rate

where the aspect ratio would correspond to the value that mini-

mizes the error between measured and simulated pressure loss

using the pore network model. The three strategies are equivalent

and we illustrate the latter one in Fig. 9 where knowledge of bed

pressure drop at Rebed = 10ÿ2 enables estimation of the effective

throat radius assuming that all throats are assigned the same

cross-sectional shape factors. This gives a throat effective aspect

ratio of 1.37 which minimizes the error between Darcy’s law (lam-

inar linear limit of Ergun equation) and pore network model

predictions.

4.3. (Non-turbulent) quadratic dissipation versus acceleration/

deceleration effects

Network simulations of a strongly inertial liquid flow in a bed

packed with 4 mm spheres at Rebed = 102 are illustrated in the form

of contour plots in Fig. 10 for the poral total head field (Fig. 10a),

the channel Reynolds numbers as defined by Eq. (13) (Fig. 10b),

and the pore velocity head normalized with respect to local static

pressure (Fig. 10c). Apart from the expected trend of the pressure

field in the streamwise direction (Fig. 10a), the wide disparities

displayed by the channel Reynolds numbers, Reij (Fig. 10b) are

worth noting. For Rebed = 102, the channel Reij varied up to 546,

which, according to the ranges delineated by the contraction/

expansion correlations (Eqs. (11) and (12)), suggests that in none

of the network elements the flow was turbulent. However, devia-

tion from the pure laminar case (Reij > 10) concerned the vast

majority (78.3%) of the throat-pore-throat elements, thus unam-

biguously spotting the network locations subject to inertia-domi-

nated laminar flows. In the remaining elements of the network,

fluid irrigation took exclusively place in the linear laminar flow.

A fuller portrait is provided in Fig. 11 as regards the impact of

Rebed on the proportion of channels deviating from pure laminar

flow. It is indeed the buildup of this proportion as Rebed increases,

which senses the manner whereby deviations from Darcy’s law oc-

cur. Our model, in comprising contraction and expansion formula-

tions associated with detailed geometry and topology information

about the pore network, predicts that inasmuch as Rebed < �3, none

Sharp  contraction

κ calculated

κ measured

(a)

Sharp expansion

λ2ε measured

λ2ε calculated

(b)

Fig. 8. Parity plots of calculated versus measured friction loss factors for sharp

contraction (j) & sharp expansion (e) as a function of (channel) Reynolds number

and contraction/expansion areal ratio (k = rcij
2/ri

2), see Table 2. Data (and param-

eters C0 = 27, D0 = 26) are from Idel’chik [62], and only n = 0.8 & m = 1.1 are fitted

parameters. Envelopes represent twice the average absolute relative error between

measured and calculated friction factors, i.e., 16.8 % for j, 18.9 % for e.
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Fig. 9. Relative error between Darcy regime determination of bed pressure drop
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of the network elements shall deviate from the linear Darcy’s

behavior (for all Nc channels, Reij < 10, Fig. 11). After this limit,

the fraction of channels undergoing non-linear entrance/exit ef-

fects quickly climbs with Rebed. Such transition from Darcy’s behav-

ior is sharp and beyond ambiguity. Anyone involved in

discriminating transitions from Darcy’s behavior is aware that such

delineation from pressure drop – flow rate plots is quite diffuse

though often bracketed between Rebed = 1 and 10, e.g., [52,54,65].

Therefore, in spite of its qualitative consistency with a large body

of experimental data, this transition at Rebed � 3 is unique to the

network under study. It highlights how the flow meso-mecha-

nisms are impacted by the network morphology. Changing one

or some of the network topology and geometry features will reflect

in an alteration of this transition. Moreover, Fig. 11 illustrates the

response of the upper 1% fastest channels as a function of Rebed.

Their corresponding average channel Reynolds number increases

nearly linearly with the bed Reynolds number but the turbulent

limit is never reached across the simulated Rebed range.

Deviations from linear behavior correspond to the irreversible

degradation of kinetic energy as a result of fluid acceleration and

deceleration nearby the element’s contraction and expansion.

These quadratic effects, concealed in the contraction/expansion

friction losses (Eqs. (9) and (19)), are not to be confounded with

the velocity head in the pore which represents to the most only

a marginal fraction of the pore static pressure (Fig. 10c). A more

accurate manner to evaluate how important the local accelera-

tions/decelerations are, consists in comparing the static pressure

difference, Pi ÿ Pj, between all couples of adjacent pores with the

change in velocity head as the fluid moves from pore i to pore j.

℘i
_℘E = 105 Pa

0

Reij = 546

0

0

ρqij
2/(2π2ri

4Pi)= 
1.4 10-3

(a)

(b)

(c)

Fig. 10. (a) Total head 3D field (and direction of macroscopic flow self-evident), (b)

channel Reynolds numbers (Eq. (13)), and (c) fractional pore velocity head in terms

of static pressure over the porous specimen shown in Fig. 1. Simulation of strongly

inertial liquid flow (q = 700 kg/m3, l = 0.001 Pa s) in a bed packed with 4 mm

spheres at Rebed = 102.
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ReijNumber % channels

Reij > 10

Fig. 11. Incidence of bed Reynolds number on (i) the number fraction of channels in

the pore network deviating from pure laminar flow and (ii) average channel

Reynolds number of the upper 1% fastest channels.
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This difference can be evaluated in the form of an Euler number de-

fined as:

Euij ¼
Pi ÿ Pj

v
2p2 qq2

ijðr
ÿ4
ci ÿ rÿ4

cj Þ
ð30Þ

Fig. 12 illustrates how important is the effect of acceleration/

deceleration relative to static pressure difference for Rebed = 102

and 10ÿ2. The y-axis represents the cumulative (descending) distri-

bution of the simulated reciprocal Euler numbers, 1/Euij, for the Nc

pore-throat-pore elements of the network. The effect of accelera-

tion/deceleration is considered as practically negligible for

1/Eu < 0.1. This means that Eq. (6) for the total head can safely

be approximated as Pi + qgyi + o(Pi) with an error no more than

10% on neglecting the velocity head difference with respect to the

static pressure difference of any pair of interconnected pores.

Expectably, acceleration/deceleration effects for Rebed = 10ÿ2 were

vanishingly small everywhere in the pore network. On the

contrary, for Rebed = 102, 23.3% of the pore-throat-pore elements

definitely violated this approximation (Fig. 12), with some

elements showing skyrocketing 1/Eu � 130. Consequently, inclu-

sion of acceleration/deceleration effects must be taken into

account in pore network simulations in particular after breakup

from Darcy’s law regime (some Reij > 10) to accurately capture

local static pressures at the pore scale.

4.4. Pore network macroscopic (frictional) head loss gradient versus

Ergun equation

Fig. 13 displays a dissection of the dissipation contributions to

the macroscopic frictional pressure drop of an air flow as predicted

bymeans of the pore network model and expressed as a function of

Rebed. For illustration, simulation from the well-trodden Ergun

equation is also shown for a set of laminar constant = 150 and qua-

dratic constant = 1.75. This set is known to work well for unconsol-

idated packs of isometric (spherical) grains. Silencing in Eq. (6) the

contraction and expansion friction loss term, Cij and Eij, highlights

the linear laminar behavior arising solely from the channel viscous

flow (Fig. 13). The previous analysis instructed the fact that chan-

nel-based Reynolds numbers are unlikely to exceed the pipe-flow

limit of 2400 for typical packed bed operation. Channel flow contri-

bution therefore is not expected to alter the linear laminar trend of

the macroscopic head loss gradient. Moreover, a minor contribu-

tion of channel dissipation is scored over the simulated range of

bed Reynolds numbers as displayed in Fig. 13. Alternatively, simu-

lating the pore network by keeping either the contraction mecha-

nism or the expansion mechanism, while disabling the channel

viscous mechanism, gives rise to linear dissipation behavior in

the Rebed lower range. This indicates that linear laminar flow resis-

tances are also contributed by the adjacent pores via constrictions

and expansions as described in Eqs. (11) and (12). Moreover, lack

of similarity of the inertial/turbulent terms as exposed in Eqs.

(11) and (12) translates, for the Rebed upper range, into different

dissipation levels of expansions versus contractions (Fig. 13). Also,

inclusion in Eq. (7) of contraction and expansion features appears

to be an adequate assumption to bring about deviations from the

linear laminar behavior of the frictional pressure drop response.

It is worth noting that contraction or expansion dissipations out-

weigh significantly channel dissipation especially at high Rebed.

Thus it is crucial to include in pore network modeling non-linear

features associated with upstream and downstream areal changes

in the pore-throat-pore elements when Rebed lies outside the valid-

ity range of Darcy’s law. Finally, pore network simulations includ-

ing the whole set of mechanisms in Eq. (7) predict remarkably

accurately the macroscopic frictional pressure drop as given by

Ergun-like equation (Fig. 12) over a wide range of Rebed.

4.5. Pore network mechanical dispersion

The degree of heterogeneity of the pore network can be made

sense of from the coefficients of variation for the throat and pore

radii, and throat lengths given in Table 1. These COV values, com-

prised between 0.4 and 0.5, reflect quite an important heterogene-

ity in comparison to homogeneous networks (COV = 0). Such

structural heterogeneity of the network is known to cause disper-

sion. Moreover, it is of importance to realize that only the meso-

scopic level of this heterogeneity is echoed in the network energy

and mass balances Eqs. (7) and (8) above. That is, the microscopic

scale of advection inside the pores and channels cannot be resolved

in this formulation, either because it is lost in the integrations or

because of the flow approximations resorted to for describing the

contraction/expansion terms or the inner-pore hydrodynamics. In

terms familiar to chemical engineers, the pore network model

views channel flows as a 3D array of local plug flows while it is

clueless about the fluid dynamics and mixedness state in the pores

themselves. Encompassing the full spectrum of dispersion is be-

yond this study’s scope as it would have required inclusion of

molecular diffusion and solving at the microscopic level the passive

scalar advection–diffusion transport inside each individual pore-

throat-pore element to catch on the-so-called Aris-Taylor disper-

sion [9]. This was not the purpose of current work for which sin-

gle-phase flows in a complex 3D geometry such as ours would

have demanded far more elaborate computational and (fluid–fluid

and fluid-network) interaction rules.

By construction, our steady-state pore network model captures

only part of the macroscopic mechanical dispersion; the one inher-

ited, via network ensemble averaging, from the mesoscopic flow

discrepancies at the pore-throat-pore level. Neglect of microscopic

advection–diffusion coupling is anticipated to yield macroscopic

dispersion that is lower than actual one. Similarly, too simplified

a picture of pore-scale flow and fluid convective mixedness, as re-

flected by the simplified assumptions subtending Eqs. (29) and

(30), might not be sufficient and would in all likelihood lead to

an underestimation of mechanical dispersion. The importance of

such bias will be assessed by computing pore network longitudinal

and transverse Péclet numbers and comparing them to state-of-art

knowledge in the area of dispersion in porous media. Also, the role

of non-linear laminar phenomena in prompting dispersive effects
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Fig. 13. Pore network predictions of macroscopic head loss gradient for air flow

(q = 1.2 kg/m3, l = 1.78 10ÿ5 Pa s), assessment of the relative importance of Darcy

and non-Darcy (expansion/contraction) terms, and comparison with Ergun-like

correlation macroscopic pressure gradient correlation.



potentially deviating from those known to prevail in Darcy’s re-

gime will be discussed below.

Fig. 14 portrays the dependence between the bed Reynolds

number and the number fraction of channels manifesting gas and

liquid retroflows (channel ascending flow). The percentage of ret-

roflow channels was invariant in Darcy flow corresponding to ca.

19% for our particular network. Beyond Rebed � 3 transition, qua-

dratic effects brought about weak Rebed dependence with negative

correlation; though the decline in retroflow proportion was limited

up to Rebed � 250. This waning is coherent with dominance of mac-

roscopic descending flow imposed on the network. However, the

lesser fraction of ascending channels in non-Darcy flow mirrors a

larger statistical fraction of fluid flow rate events as shown in

Fig. 13 whether gas or liquid is concerned. The retroflow rate frac-

tion is invariant in Darcy flow, around 8%, but showcases an in-

crease upon inception of inertial (non-Darcy) effects after

Rebed � 3. Occurrence of retroflows in our pore network simula-

tions exemplifies in intuitive terms manifestation of mechanical

dispersion at the macroscopic level nuancing the latter in Darcy

and non-Darcy flows.

Let us examine the evolution as a function of Rebed of the 3D

ensemble-average velocity and root-mean square velocity compo-

nents in the throats (Eqs. (26) and (27)) and pores (Eqs. (29) and

(30)) of the network (Fig. 15a–c). Pore network simulations predict

expectably pore vertical average velocity, hvpyi, lower than its

channel counterpart, hvcyi. Also, the average channel velocity com-

ponents in the directions normal to main flow are close to zero as

should be expected. This is unlike the x and z pore average velocity

components, especially h vpxi. This signifies that the combination

rules implemented by Eqs. (29)-(29) are not fully adequate, and

that capture of realistic poral fluid velocity field would require

more accurate pore fluid dynamic hypotheses. Another feature of

the pore network simulations is the prediction of quasi-isotropic

spatially fluctuating velocity components, in streamwise and

transverse directions, for channels and pores alike. It is logical to

expect that the state of mixedness to prevail within pores would

approach that of a CSTR and even more so in non-Darcy flows. Even

though Fig. 15d highlights an increase of the pore root-

mean-square velocity components as a function of Rebed, it was

not sufficient to induce stronger dispersion as compared to that

contributed by the ensemble of channels.

The ratios hvcyi/hv
0
cai and hvpyi/hv

0
pai merely represent for each

direction the Péclet number that quantifies the extent of direc-

tional mechanical dispersion. The common normalizing velocity

(i.e., hvcyi or hvpyi) of the directional root-mean-square velocities

yields transverse and longitudinal Péclet numbers that are indiffer-

ent to spatial directions likening the pattern noted for the

root-mean-square velocities above (Fig. 15c and d). However, an

isotropic mechanical dispersion as predicted by the pore network

mode is at odds with the well-known fact that longitudinal disper-

sion outperforms transverse dispersion, typically by a factor 5 in

advection dominated flows [66].

Fig. 16 exemplifies the dependence between Rebed and longitu-

dinal dispersions (PeL) for channel (=hvcyi/hv
0
cai), poral (=hvpyi/hv

0
pai)

and channel-pore aggregated contributions, to reflect their relative

weights in the macroscopic dispersion resulting from the set of

pore-channel-pore mesoscopic elements. Up to Rebed � 3, the expo-

nent of the scaling law relating Rebed to PeL as predicted from the

pore network model is zero meaning that mechanical dispersion

is proportional to the streamwise average (or interstitial) velocity.
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Fig. 14. Pore network predictions of the number and flow-rate fractions of

retroflow channels for gas (q = 1.2 kg/m3, l = 1.78 10ÿ5 Pa s) and liquid

(q = 700 kg/m3, l = 10ÿ3 Pa s) flows in Darcy and non-Darcy flow regimes.
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Bruderer and Bernabé [9] observed such linear behavior over a

wide range of Reynolds numbers for longitudinal dispersion in

2D arrays of square capillaries exhibiting important structural het-

erogeneity comparable to ours, i.e., COV > 0.5 (Table 1). In 3D por-

ous media, according to the comprehensive compilation of PeL by

Delgado [66,67], such scaling law is fulfilled piecewise: (i) in the

so-called predominant mechanical dispersion regime valid mainly

over Darcy’s law upper range, in our case up to Rebed < 3, and (ii) in

the pure mechanical dispersion regime, Rebed > 3 assigned to iner-

tia-dominated flows, where PeL levels off at a value of 2 at high

bed Reynolds numbers.

For the purpose of comparison, we plotted in Fig. 16 a general

correlation by Delgado [66] for longitudinal dispersion in packed

beds corresponding to a regime with dominant mechanical disper-

sion (Rebed < 3). The pore network model captures quite well the

behavior of the longitudinal dispersion (PeL) in laminar and moder-

ately inertial flows. Delgado’s correlation predicted PeL range be-

tween 0.4 and 1, whereas the pore network PeL plateaus at 0.6

for Rebed < 3. We could not compare pore network PeL to Delgado’s

correlation under purely mechanical controlled flows (Rebed > 3) as

his correlation possibly contained typesetting errors in the pub-

lished form (their Eq. (16), P.1250). Therefore, we merely extrapo-

lated the correlation for dominant mechanical dispersion towards

higher Rebed (dotted line in Fig. 16). For Rebed > 3, the pore network

model predicted an increase in mechanical dispersion in qualita-

tive accordance with tracer experiments of dispersion in porous

media at high bed Reynolds numbers [67]. However, such increase

was insufficient to reach PeL = 2 which characterizes inertia domi-

nated flows. These findings confirm that extension of pore network

modeling to simulate the full range of macroscopic mechanical dis-

persion in heterogeneous networks is doomed to failure if an

appropriate description at a mesoscopic level of pore fluid dynam-

ics is not provided.

5. Conclusion

The local properties of an isometric bead pack were determined

experimentally by means of a high-resolution X-ray micro-tomog-

raphy imaging technique. A three-dimensional irregular and

unstructured pore network was then extracted and thoroughly

characterized in terms of topology and geometry by establishing

the needed distributions for pore bodies, throats, channels and

connectivity. A particular emphasis was put on modeling, simulat-

ing and analyzing the non-turbulent non-Darcy flows. The outlined

methodology of getting the structure through micro-tomography

and then using a theoretical approach for flow description is gen-

eral to be applied to samples with different microstructures.

For the description of non-Darcy flows in the obtained pore net-

work, mechanical energy balances were formulated at the level of

pore-throat-pore mesoscopic elements. The non-linear inertial

flow signatures were captured on the basis of flow analogies with

friction loss through sudden contractions and expansions. Consti-

tutive equations derived for contraction and expansion losses were

elaborated and validated using experimental data.

The pore-level pressure and velocity information yielded from

solving the network model enabled construction of macroscopic

analogs by volume and ensemble averaging over the entire net-

work domain. The model enabled access to a variety of properties

such as the contribution of non-turbulent quadratic dissipation

and acceleration/deceleration across the channels, the contribu-

tions to the macroscopic frictional loss of the different mechanisms

at the channel and pore scales, and the various components of

channel and pore mechanical dispersion.

The following consolidated conclusions emerge from the study:

– The wealth of detailed topology and geometry information

obtained from X-ray imaging and implemented in the pore net-

work model successfully captured the moment and extent of

takeover by laminar non-linear phenomena. From isolating

the channel events with channel Reynolds numbers in excess

of 10, inception of non-Darcy flows was detected to occur at a

bed Reynolds number equal 3 for our particular bead pack.

– The average channel Reynolds number of the 1% fraction of the

fastest channel flow events increased linearly with bed Rey-

nolds number (or cumulative flow rate) but with no sign that

turbulence occurred either in contractions, expansions or

throats (Reij � 104).

– The pattern of local Euler numbers revealed that the contribu-

tion of pore–pore velocity head difference to total head differ-

ence becomes important for Rebed > 3. The consequence is a

necessity to account for the acceleration/deceleration term in

the mechanical energy balances to properly estimate the static

pressure field in the network.

– The pore network model provided remarkably good predictions

of the trend of macroscopic frictional loss gradient in terms of

contributions by the pore and channel linear losses, and the

contraction and expansion quadratic losses. It was observed

that the linear losses attributed only to channel flow was a mar-

ginal portion of the overall frictional loss for non-Darcy flows.

– As a part and parcel of macroscopic mechanical dispersion, the

level of details of the network model was sufficient to resolve all

the channels exhibiting a retroflow behavior opposite to the

dominant macroscopic flow direction. However, the model pre-

dicted quasi-isotropic mechanical dispersions in channels and

pores alike. For channels, experimental evidence contradicts

such findings as transverse Péclet numbers are typically ca. 5

times lower than their longitudinal counterparts. According to

the network model, poral dispersion was not sufficient to

induce stronger dispersion as compared to that contributed by

the ensemble of channels. This led to an overall mechanical dis-

persion that was lower than that predicted from literature tra-

cer-based PeL correlations. In future works, extension of pore

network modeling to simulate the full range of macroscopic

mechanical dispersion in heterogeneous networks will require

finer descriptions at the mesoscopic level of pore fluid dynam-

ics. Validations could also be performed for the numerical resi-

dence time distributions (RTDs) simulated from the pore

network which can be compared to experimentally determined

RTDs.

Rebed

PeL

Fig. 16. Pore network prediction of the behavior of longitudinal mechanical

dispersion contributed by channels, pores and their combination in Darcy and

non-Darcy flow regimes, and comparison with Delgado’s [66] correlation for

longitudinal Péclet number in porous media.
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