3,531 research outputs found
Lieb-Robinson Bound and Locality for General Markovian Quantum Dynamics
The Lieb-Robinson bound shows the existence of a maximum speed of signal
propagation in discrete quantum mechanical systems with local interactions.
This generalizes the concept of relativistic causality beyond field theory, and
provides a powerful tool in theoretical condensed matter physics and quantum
information science. Here, we extend the scope of this seminal result by
considering general Markovian quantum evolution, where we prove that an
equivalent bound holds. In addition, we use the generalized bound to
demonstrate that correlations in the stationary state of a Markov process decay
on a length-scale set by the Lieb-Robinson velocity and the system's relaxation
time
Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space
We consider the manifold of all quantum many-body states that can be
generated by arbitrary time-dependent local Hamiltonians in a time that scales
polynomially in the system size, and show that it occupies an exponentially
small volume in Hilbert space. This implies that the overwhelming majority of
states in Hilbert space are not physical as they can only be produced after an
exponentially long time. We establish this fact by making use of a
time-dependent generalization of the Suzuki-Trotter expansion, followed by a
counting argument. This also demonstrates that a computational model based on
arbitrarily rapidly changing Hamiltonians is no more powerful than the standard
quantum circuit model.Comment: Presented at QIP 201
Allee Effects May Slow the Spread of Parasites in a Coastal Marine Ecosystem
Allee effects are thought to mediate the dynamics of population colonization, particularly for invasive species. However, Allee effects acting on parasites have rarely been considered in the analogous process of infectious disease establishment and spread. We studied the colonization of uninfected wild juvenile Pacific salmon populations by ectoparasitic salmon lice (Lepeophtheirus salmonis) over a 4-year period. In a data set of 68,376 fish, we observed 85 occurrences of precopular pair formation among 1,259 preadult female and 613 adult male lice. The probability of pair formation was dependent on the local abundance of lice, but this mate limitation is likely offset somewhat by mate-searching dispersal of males among host fish. A mathematical model of macroparasite population dynamics that incorporates the empirical results suggests a high likelihood of a demographic Allee effect, which can cause the colonizing parasite populations to die out. These results may provide the first empirical evidence for Allee effects in a macroparasite. Furthermore, the data give a rare detailed view of Allee effects in colonization dynamics and suggest that Allee effects may dampen the spread of parasites in a coastal marine ecosystem
A 15kWe (nominal) solar thermal electric power conversion concept definition study: Steam Rankine reheat reciprocator system
An evaluation was made of the potential of a steam Rankine reheat reciprocator engine to operate at high efficiency in a point-focusing distributed receiver solar thermal-electric power system. The scope of the study included the engine system and electric generator; not included was the solar collector/mirror or the steam generator/receiver. A parametric analysis of steam conditions was completed leading to the selection of 973 K 12.1 MPa as the steam temperature/pressure for a conceptual design. A conceptual design was completed for a two cylinder/ opposed engine operating at 1800 rpm directly coupled to a commercially available induction generator. A unique part of the expander design is the use of carbon/graphite piston rings to eliminate the need for using oil as an upper cylinder lubricant. The evaluation included a system weight estimate of 230 kg at the mirror focal point with the condenser mounted separately on the ground. The estimated cost of the overall system is 90/kW for the maximum 26 kW output
Steam bottoming cycle for an adiabatic diesel engine
Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated
Alien Registration- Poulin, Claudia R. (Jackman, Somerset County)
https://digitalmaine.com/alien_docs/6811/thumbnail.jp
Calculating Infinite Series Using Parseval\u27s Identity
Parseval\u27s identity is an equality from Fourier analysis that relates an infinite series over the integers to an integral over an interval, which can be used to evaluate the exact value of some classes of infinite series. We compute the exact value of the Riemann zeta function at the positive even integers using the identity, and then we use it to compute the exact value of an infinite series whose summand is a rational function summable over the integers
Cosmological Implications Of Ultralight Axionlike Fields
Cosmological observations are used to test for imprints of an ultralight axionlike field (ULA), with a range of potentials V(ϕ)∝[1−cos(ϕ/f)]ⁿ set by the axion-field value ϕ and decay constant f. Scalar field dynamics dictate that the field is initially frozen and then begins to oscillate around its minimum when the Hubble parameter drops below some critical value. For n=1, once dynamical, the axion energy density dilutes as matter; for n=2 it dilutes as radiation and for n=3 it dilutes faster than radiation. Both the homogeneous evolution of the ULA and the dynamics of its linear perturbations are included, using an effective fluid approximation generalized from the usual n=1 case. ULA models are parametrized by the redshift z(c) when the field becomes dynamical, the fractional energy density f(z(c))≡Ωₐ(z(c))/Ωₜₒₜ(z(c)) in the axion field at zc, and the effective sound speed c²ₛ. Using Planck, BAO and JLA data, constraints on fzc are obtained. ULAs are degenerate with dark energy for all three potentials if 1+z(c)≲10. When 3×10⁴≳1+z(c)≳10, f(z(c)) is constrained to be ≲0.004 for n=1 and f(z(c))≲0.02 for the other two potentials. The constraints then relax with increasing zc. These results have implications for ULAs as a resolution to cosmological tensions, such as discrepant measurements of the Hubble constant, or the EDGES measurement of the global 21 cm signal
Compatibility of quantum states
We introduce a measure of the compatibility between quantum states--the
likelihood that two density matrices describe the same object. Our measure is
motivated by two elementary requirements, which lead to a natural definition.
We list some properties of this measure, and discuss its relation to the
problem of combining two observers' states of knowledge.Comment: 4 pages, no figure
- …