558 research outputs found

    Transitions in synchronization states of model cilia through basal-connection coupling

    Get PDF
    Despite evidence for a hydrodynamic origin of flagellar synchronization between different eukaryotic cells, recent experiments have shown that in single multi-flagellated organisms, coordination hinges instead on direct basal body connections. The mechanism by which these connections leads to coordination, however, is currently not understood. Here we focus on the model biflagellate {\it Chlamydomonas reinhardtii}, and propose a minimal model for the synchronization of its two flagella as a result of both hydrodynamic and direct mechanical coupling. A spectrum of different types of coordination can be selected, depending on small changes in the stiffness of intracellular couplings. These include prolonged in-phase and anti-phase synchronization, as well as a range of multistable states induced by spontaneous symmetry breaking of the system. Linking synchrony to intracellular stiffness could lead to the use of flagellar dynamics as a probe for the mechanical state of the cell.Comment: 14 pages, 9 figure

    Usulan Penataan Pedagang Kaki Lima di Kawasan Lapangan Merdeka Medan

    Full text link
    Merdeka Square is a public open space which is intended for all people. Public open space is a place as a general basis where people carry out functional and ritual activities that bind the community, both in the normal routine of daily life or in periodic celebrations. Merdeka Square is a place frequented by some of the citizens of Medan City. Even visitors from outside Medan came to take time to stop at Merdeka Square when certain events were held at Merdeka Square. This is what attracts people - certain people use the crowd to become the potential to run a business. So it is not surprising that in the Merdeka Square area at certain events and days it will be crowded not only with the presence of visitors to Merdeka Square, but also the presence of the informall sector such as street vendors. The purpose of this study is to obtain or produce a design proposal to organize the Street Vendors in the Merdeka Square Area in hopes of increasing comfort for visitors in the Merdeka Square Area

    Strong Calcium Emission Indicates that the Ultraviolet-flashing SN Ia 2019yvq Was the Result of a Sub-Chandrasekar-mass Double-detonation Explosion

    Get PDF
    We present nebular spectra of the Type Ia supernova (SN Ia) SN 2019yvq, which had a bright flash of blue and ultraviolet light after exploding, followed by a rise similar to other SNe Ia. Although SN 2019yvq displayed several other rare characteristics, such as persistent high ejecta velocity near peak brightness, it was not especially peculiar, and if the early "excess" emission were not observed, it would likely be included in cosmological samples. The excess flux can be explained by several different physical models linked to the details of the progenitor system and explosion mechanism. Each has unique predictions for the optically thin emission at late times. In our nebular spectra, we detect strong [Ca ii] λλ7291, 7324 and Ca near-IR triplet emission, consistent with a double-detonation explosion. We do not detect H, He, or [O i] emission, predictions for some single-degenerate progenitor systems and violent white dwarf mergers. The amount of swept-up H or He is < 2.8 × 10⁻⁴ and 2.4 × 10⁻⁴ M_⊙, respectively. Aside from strong Ca emission, the SN 2019yvq nebular spectrum is similar to those of typical SNe Ia with the same light-curve shape. Comparing to double-detonation models, we find that the Ca emission is consistent with a model with a total progenitor mass of 1.15 M_⊙. However, we note that a lower progenitor mass better explains the early light-curve and peak luminosity. The unique properties of SN 2019yvq suggest that thick He-shell double detonations only account for 1.1_(-1.1)^(+2.1)% of the total "normal" SN Ia rate. The SN 2019yvq is one of the best examples yet that multiple progenitor channels appear necessary to reproduce the full diversity of "normal" SNe Ia

    Metachronal waves in the flagellar beating of Volvox and their hydrodynamic origin.

    Get PDF
    Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behavior--possibly influenced by both mechanical interactions and direct biological regulation--is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characterize in detail flagellar coordination on the surface of the multicellular alga Volvox carteri, an emerging model organism for flagellar dynamics. Our studies reveal for the first time that the average metachronal coordination observed is punctuated by periodic phase defects during which synchrony is partial and limited to specific groups of cells. A minimal model of hydrodynamically coupled oscillators can reproduce semi-quantitatively the characteristics of the average metachronal dynamics, and the emergence of defects. We systematically study the model's behaviour by assessing the effect of changing intrinsic rotor characteristics, including oscillator stiffness and the nature of their internal driving force, as well as their geometric properties and spatial arrangement. Our results suggest that metachronal coordination follows from deformations in the oscillators' limit cycles induced by hydrodynamic stresses, and that defects result from sufficiently steep local biases in the oscillators' intrinsic frequencies. Additionally, we find that random variations in the intrinsic rotor frequencies increase the robustness of the average properties of the emergent metachronal waves.This work was supported in part by the EPSRC (M.P.), ERC Advanced Investigator grant 247333 and a Senior Investigator Award from the Wellcome Trust.This is the final version. It was first published by Royal Society Publishing at http://rsif.royalsocietypublishing.org/content/12/108/20141358

    Strong Calcium Emission Indicates that the Ultraviolet-flashing SN Ia 2019yvq Was the Result of a Sub-Chandrasekar-mass Double-detonation Explosion

    Get PDF
    We present nebular spectra of the Type Ia supernova (SN Ia) SN 2019yvq, which had a bright flash of blue and ultraviolet light after exploding, followed by a rise similar to other SNe Ia. Although SN 2019yvq displayed several other rare characteristics, such as persistent high ejecta velocity near peak brightness, it was not especially peculiar, and if the early "excess" emission were not observed, it would likely be included in cosmological samples. The excess flux can be explained by several different physical models linked to the details of the progenitor system and explosion mechanism. Each has unique predictions for the optically thin emission at late times. In our nebular spectra, we detect strong [Ca ii] λλ7291, 7324 and Ca near-IR triplet emission, consistent with a double-detonation explosion. We do not detect H, He, or [O i] emission, predictions for some single-degenerate progenitor systems and violent white dwarf mergers. The amount of swept-up H or He is < 2.8 × 10⁻⁴ and 2.4 × 10⁻⁴ M_⊙, respectively. Aside from strong Ca emission, the SN 2019yvq nebular spectrum is similar to those of typical SNe Ia with the same light-curve shape. Comparing to double-detonation models, we find that the Ca emission is consistent with a model with a total progenitor mass of 1.15 M_⊙. However, we note that a lower progenitor mass better explains the early light-curve and peak luminosity. The unique properties of SN 2019yvq suggest that thick He-shell double detonations only account for 1.1_(-1.1)^(+2.1)% of the total "normal" SN Ia rate. The SN 2019yvq is one of the best examples yet that multiple progenitor channels appear necessary to reproduce the full diversity of "normal" SNe Ia

    Kajian Tentang Jalur Pedestrian Berdasarkan Aspek Kenyamanan

    Full text link
    Pedestrian path is a space for pedestrian activities to carry out activities and to provide services topedestrians so that it can improve the smoothness, safety, and comfort of pedestrians when crossing it. Infact the pedestrian paths that exist are mostly unable to meet the passions of pedestrians. The length oftime pedestrians are less noticed, which should be passed comfortably suddenly blocked by poles, trees,trash cans, stops, and traffic signs because the placement is not adjusted to the place so that thecirculation of road users becomes narrow and disturbed. This study aims to find aspects of comfort in thepedestrian path. Research uses quantative methods. This study found that some of the pedestrian path inthe study area were comfortable, but some were uncomfortable

    Long-range interactions, wobbles, and phase defects in chains of model cilia

    Get PDF
    Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states
    corecore