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Transitions in synchronization states of model cilia through basal-connection coupling
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LSchool of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia.
2 Physics Department, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
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Despite evidence for a hydrodynamic origin of flagellar synchronization between different eukary-
otic cells, recent experiments have shown that in single multi-flagellated organisms, coordination
hinges instead on direct basal body connections. The mechanism by which these connections leads
to coordination, however, is currently not understood. Here we focus on the model biflagellate
Chlamydomonas reinhardtii, and propose a minimal model for the synchronization of its two flagella
as a result of both hydrodynamic and direct mechanical coupling. A spectrum of different types of
coordination can be selected, depending on small changes in the stiffness of intracellular couplings.
These include prolonged in-phase and anti-phase synchronization, as well as a range of multistable
states induced by spontaneous symmetry breaking of the system. Linking synchrony to intracellular
stiffness could lead to the use of flagellar dynamics as a probe for the mechanical state of the cell.

INTRODUCTION

Cilia and flagella are structurally identical, whip-like
cellular organelles employed by most eukaryotes for tasks
ranging from sensing and locomotion of single cells [1],
to directing embryonic development [2] and driving cere-
brospinal fluid flow [3] in animals. Originally observed
in 1677 by the Dutch pioneer Antoni van Leeuwenhoek,
groups of motile cilia and flagella have a seemingly spon-
taneous tendency to coordinate their beating motion
and generate large-scale patterns known as metachronal
waves [4]. Coordination has often been proposed to pro-
vide an evolutionary advantage by improving transport
and feeding efficiency [5-10], although estimates of the
magnitude of this effect are notoriously difficult. Despite
the uncertainty on its biological role, however, the univer-
sality of flagellar coordination is an empirical fact, and it
suggests the existence of a correspondingly general mech-
anism for synchronization. Mechanical forces, transmit-
ted either by the surrounding fluid or internally through
the cells, have often been proposed as responsible for this
coordination [11-15]. Understanding how synchroniza-
tion emerges could therefore highlight novel and poten-
tially subtle roles played by physical forces in cell biol-
ogy. Here we develop a minimal model that links small
changes in the mechanical properties of cells with the
dynamics of their protruding flagella. In turn, this ap-
proach could lead to coordination being used as a probe
to measure the internal mechanical state of a cell.

Reports of coordinated motion in nearby swimming
sperm [16, 17] hint at the importance of hydrody-
namic coupling. Hydrodynamic-led coordination of self-
sustained oscillators, mimicking the active motion of cilia
and flagella [18, 19], has been extensively investigated
theoretically [12, 20-22], numerically [23-25], and exper-
imentally with colloidal rotors [26, 27] and rowers [28, 29].
Despite the peculiar constraints of low-Reynolds number
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hydrodynamics, these studies suggest that hydrodynamic
interactions can lead to ciliary coordination when coupled
to either a phase-dependent driving force [12, 21], or ax-
onemal elasticity [30]. Indeed, hydrodynamic-mediated
synchronization has been confirmed experimentally be-
tween pairs of eukaryotic flagella from different somatic
cells from the green alga Volvoz carteri [14].

Inter-cellular coordination of flagella, however, does
not necessarily imply intra-cellular coordination, and
therefore it is not a priori clear whether hydrodynamic
coupling is also responsible for the synchronization ob-
served in individual multi-flagellated cells. Experimental
studies of flagellar coordination within a single cell have
focussed mainly on the biflagellate green alga Chlamy-
domonas reinhardtii [31, 32] (CR), whose flagella are usu-
ally locked in a characteristic in-phase breaststroke mo-
tion. Early studies of flagellar coordination in CR [33-
35] were recently refined [11, 36] and extended [37] using
microfluidic devices and high-speed imaging of flagella
[38]. These pointed at a fundamentally hydrodynamic
origin for the observed synchronization, either through
direct coupling or via a mechanism based on cell-body
rocking [13]. However, a series of elegant novel experi-
ments in CR and other flagellates challenged this view
convincingly, showing instead that coordination requires
the intracellular striated fibres that join flagellar basal
bodies [39, 40]. For the CR mutant vfl3, with impaired
mechanical coupling and a variable number of flagella,
synchronization is completely disrupted [39] except for
sporadic periods of synchrony in cells with two close flag-
ella oriented in the same direction (see Fig. S1 in [40]).
Even though the precise mechanism by which direct con-
nections affect flagellar coordination remains to be clar-
ified [15], the spontaneous transitions between extended
in-phase (IP) and anti-phase (AP) beating in the CR
mutant ptzl [41], already suggest that multiple synchro-
nization states should be achievable through changes in
the fibres’ mechanical properties within the physiological
range.

Here we propose a minimal model for flagellar dynam-
ics for CR which can sustain both stable IP and stable
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FIG. 1. Physical configuration. (a) Two external rotors
(blue), moving in the fluid, mimic the beating motion of flag-
ellar filaments. Internal rotors (red) represent the flagellar
basal bodies, and are coupled through an anisotropic spring.
(b) Anti-phase (AP) and (c) in-phase (IP) states.
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AP states even in the absence of hydrodynamic coupling,.
Within this framework, the phase dynamics are deter-
mined principally by the mechanical state of the basal
body fibres [42], with both types of coordination possible
within a physiological range of fibres’ stiffnesses [43]. The
inclusion of hydrodynamic coupling leads to the emer-
gence of a region in parameter space where non-trivial
states can emerge as a result of spontaneous symmetry
breaking through pitchfork bifurcations of limit cycles.

I. MINIMAL MODEL AND LEADING ORDER
DYNAMICS

Figure la summarises our minimal model of flagella
coupled through hydrodynamic and basal-body inter-
actions. Following previous theoretical work [20, 44],
and experimental measurements of flagellar flow fields
and waveform elasticity [14], the two flagella of Chlamy-
domonas are represented here by two spheres of radius
a, immersed in a three dimensional fluid of viscosity u,

and driven around circular orbits of radii R; (i = 1,2) by

constant tangential driving forces Fl(n)t Springs of stiff-

ness A resist radial excursions from the equilibrium length
Rp; and the magnitude of the internal driving forces,

Fl(nt) 6mpaRow; guarantees that, when isolated, the
i-th oscillator will rotate at the intrinsic angular speed
w;. The orbits are centred along the z-axis, a distance
l apart, and lie along the zy plane. Polar and radial
coordinates (¢;, R;) define the oscillators’ instantaneous
positions around the centres of their respective orbits.
We will refer to R;(¢) as the external rotor radii.

Both hydrodynamic and direct elastic interactions cou-
ple these minimal cilia. Hydrodynamic coupling is
mediated by the fluid disturbance generated by each
sphere’s motion, modelled here as the flow from a point
force. These interactions affect the instantaneous an-
gular speeds ¢; both directly, through a hydrodynamic
torque, and indirectly by modifying the orbits’ radii. For
counter-rotating oscillators like those describing Chlamy-
domonas flagella, the resulting effective coupling will
promote AP synchronization [15, 41, 44, 45| (Fig. 1b).
In addition to external flagellar interactions, consider-

able evidence [39, 40| suggests that flagellar dynamics
are strongly influenced by direct intracellular mechanical
coupling, through striated fibres joining the basal bod-
ies [33, 46| that can lead the system to IP synchrony
(Fig. 1c). Intracellular connections are modelled here
by introducing, for each oscillator, an auxiliary arm of
fixed length s (<« Rp) at an angle 6 ahead of the ro-
tating sphere. The endpoints of these arms (red spheres
in Fig. 1a) are coupled via an anisotropic elastic medium
acting as elastic springs of stiffnesses (k,, k,) and equilib-
rium lengths (I,0) in the z and y directions respectively.
This is intended to represent the intrinsically anisotropic
structure of the fibre bundles connecting the basal bod-
ies [42]. The equations of motion, derived in Supplemen-
tary Information S1, follow from the requirement of zero
net force and torque on each oscillator, and in the limit
Ry/l < 1 can be approximated as (see Supplementary
Information S1)

¢2J(¢17¢2) + P

o = pown+ p K (1. ¢2)

& Sl + ) [G(61 0,60~ 0) — Glo1 + 0,61 +0)
2= s 4 B 160 00) 4 P K 90,6)

+ Sl 1) (662 = 0,61-+0) ~ Gl6a — 0,62~ 0)
Ry = 2R — o) + pRadalK (2, 60) + pliaH (60, 62)
Ro = 2R — Ro) + pRada K (61,62) + plts H (02, 61)

(1)

where p = 3a/8l (p < 1 as a S Rp); ¢ = 6mua is the
viscous drag coefficient of the rotating sphere; and

J(a,b) = 3cos(a — b) — cos(a +b),

K(a,b) = —3sin(a — b) — sin(a + b),

H(a,b) =3 cos(a —b) + cos(a +b), (2)
G(a,b) = 5 k: T, ~ sin(a + b) — % sin(a — b).

In order to model the configuration typical of Chlamy-
domonas we will focus here on identical but counter-
rotating oscillators, wy = —ws = w. Parameter values
are given in Table I unless otherwise specified.

II. FIBRES-ONLY COUPLING

Despite the apparent simplicity, this minimal system
displays rich dynamics, and it is therefore convenient to
analyse its behaviour following steps of increasing com-
plexity. Let us begin by considering the case in which
hydrodynamic coupling is completely neglected. The hy-
drodynamic drag is still necessary for each model cilium



Variable Symbol Value
model cilium radius [14] a 0.75 pum
interflagellar spacing l 15 pm
int./ext. rotor angle 0 0
equilibrium external rotor Ro 5 pm
radius
fixed internal rotor radius s 0.1 pm
external spring stiffness [22] A 4% 1077 Nm™!
viscosity of water m 1073 Pas
ciliary beat frequency [11] | f =w/27 50 Hz

TABLE I. Minimal model parameters used throughout, unless
stated otherwise.
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FIG. 2. Synchronization dynamics for pairs of model cilia
in the absence of hydrodynamic interactions. Phase sum,
a(t) = ¢1(t) + ¢a(t), for (a) ky — ky = £1072 Nm™*, (b)
ky — ks, = £107% Nm™" and (c) ky — ko = +£107* Nm™%.
In each case (starting with ¢1(0) = 0), IP (blue) and AP
(red) synchronized states are obtained for k, > k; and
ky < k., respectively, over a time-scale inversely proportional
to max(ky, ks). (d) Values of 6(c) measured from numeri-
cal simulations (circles) compare favourably with Eq. (4) for
sufficiently soft internal springs. Other model parameters as
given in Table I.

(through () in order to balance the driving force, but
there is no direct hydrodynamic coupling between the
spheres. In this case Ry = Ry = Ry, and recasting the
angular dynamics in terms of phase sum and difference

(0,0) = (¢1 + ¢2, ¢1 — p2) we obtain

T = — E sin? é sin(o

= (hy = ko) 2 s (5 +6) sin(o), ®
2

§ = 2w — 0 [(ky + ko) + (ky — kg) cos(o)] sin(0 + 26).

- (RR

Requiring that the maximal torque exerted on each oscil-
lator by the internal springs is always smaller than that
from the driving force (max(ky, ky)s? < ¢ Riw) guaran-
tees that the cilia will always be beating (5 > 0), and

defines a physiologically plausible range for k’s, which in
our case is ky, S 1072Nm™!. At the same time, un-
less k, = ky, the system will monotonically converge to
either IP (¢ = m) or AP (0 = 0) synchrony, depending
on whether k, is larger or smaller than k,. Figure 2a-c
shows the convergence to either state, for a set of ini-
tial conditions and increasing internal stiffnesses. When
kpy S 1073 Nm™!, the phase sum evolves much faster
than the difference, and o follows the approximate dy-
namics

o= (k,— kx)@ sin(o), (4)

as shown in Fig. 2d. The instantaneous and average
phase speed profile can be solved analytically (see Sup-
plementary Information S3). In the case of k; (in IP) >
ky (in AP), the model predicts a lower average phase
speed in IP than in AP which is in qualitative agree-
ment with experimental observations [41]. Recent studies
argue that hydrodynamics plays a negligible role in flag-
ellar synchronization for single cells [39, 40]. Without
hydrodynamics, our model predicts that the effective in-
terflagellar coupling should be given by 2me = xs? /w(R3.
Using the known value for Chlamydomonas, || ~ 0.015
[11, 41], we obtain £ ~ 1073 Nm~!. The Young’s mod-
ulus for the bundle of striated fibres can then be esti-
mated, E = kL/A, where L and A are the length and
cross-sectional area of the bundle, respectively. Taking
L = 250nm and A = 7 - 252nm? results in the value
E ~ 105 Pa [42, 47|. This is a biologically plausible es-
timate, midway between the elastic modulus of relaxed
skeletal muscle (E ~ 10%Pa) and elastin (E ~ 10° Pa)
[43].

IIT. STIFF FLAGELLA HYDRODYNAMICS

We begin now to include the effect of hydrodynamic
interactions under the assumption of artificially stiff flag-
ella, implemented in this section by increasing the radial
spring stiffness to A = 4 x 1079 Nm™! (10x the value in
Table I). Increasing A reduces the typical response time
of the radial coordinate ({/\) and, when this is much
smaller than the angular timescale (27/w), it allows us
to simplify the dynamics by assuming an instantaneous
radial response [44]. Then, to first order in the small
parameter p, Egs. (1) imply that o will obey

C 2 ), )

CRg A

o= |(ky —ky)

once the dynamics have been averaged over the fast vari-
able §. The coefficient of sin(o) above provides an intu-
itive understanding of the roles of basal body coupling
and elasto-hydrodynamic interactions in determining the
synchronization state of the system, which is useful as a
general rule of thumb to assess the relative importance
of these phenomena even beyond the “stiff flagella” case.
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FIG. 3. Steady state solutions when radial dynamics are fast compared to the phase dynamics. This is achieved by setting
XA =10Ao =4 x 10°% Nm~!. In each simulation k; = 5 x 10~ Nm~—'. Other parameters shown in Table I. (a-c) Phase sum
o(t) = ¢1(t) + ¢2(¢) and (d-f) external rotor radii R;(t) are shown as functions of time for various values of k. (g) The mean
value of phase sum, (o(¢)) and (h) external rotor radius R;(¢) are computed from numerical solutions (green) and compared
with analytical predictions of Eq. (5) (dashed) and Egs. (6,7) (dotted).

Within this approximation, hydrodynamics appears to
simply shift the location of the transition between AP
and IP states, determined by the steady state time aver-
age (o), from k, = k; to ky = ky + 2p(Ro/s)?(w(/A)?\.
This is indeed confirmed by simulations of the full system
for large [ (see Fig. 4b).

A closer inspection, however, reveals more intriguing
dynamics which become particularly evident for small
inter-flagellar separations. Figure 3a-c shows the steady
state dynamics of ¢ for | = 15um, as k, is swept
across the transition. Between AP and IP coordina-
tion (Figs. 3a,c) there is a distinct region of k,-values
for which the system synchronizes in a non-trivial inter-
mediate state (Fig. 3b). This is accompanied by a per-
manent difference in the average values of the oscillators’
radii (Fig. 3e), with the asymmetry depending on which
of the equally probable signs of {c) is chosen by the sys-
tem. Figure 3g shows the full positive branch of (o) as k,
is swept between AP and IP values (simulations: green
solid line). This can be compared to the leading-order be-
haviour with and without hydrodynamics (black dashed
and solid lines); and the one predicted by refining Eq. (5)
to next-to-leading order in R/l (black dotted line; see
Supplementary Information S2)

5= [(k:y - kw);;% - 2p°;2< (1 - Qpcos@)ﬂ sin(o).
(6)

The semi-quantitative agreement between the simulated
and predicted dependence of the steady-state (o) ex-
tends also to the k,-dependence of the time-averaged
radii (Fig. 3h), which follows in the same approximation

15 R3

2
Ri2 =Ry {1 + &)\C (1 — %% cos(a)) sin(a)} . (1)

Figure 4a shows that the agreement extends across the
full range of separations I > 15 pum, with particularly
accurate estimates for the values of k, marking the be-
ginning and end of the transition (Fig. 4b). These results

suggest that the simple expression in Eq. (6) captures the
essential features of the dynamics, and can therefore be
used to analyse the nature of the transition. For small de-
viations dk in k, around the transition from AP, Eq. (6)
can be approximated as

. 52 15 pw?¢ R3\ 5

which therefore suggests that the emergence of non-
trivial coordination follows a supercritical pitchfork bi-
furcation [48]. A similar argument leads to an equivalent
conclusion for the bifurcation from IP as k, is decreased.
AP and IP domains are therefore bounded by a pitchfork
bifurcation of limit cycles.

Within the intermediate regime, the system becomes
naturally bistable through a spontaneous symmetry
breaking from a state where both oscillators follow the
same limit cycle to one where they sustain a stable differ-
ence in their average oscillation amplitudes (see Fig. 3e).
Transitions between homogeneous and inhomogeneous
oscillation states, and bistability, have only recently been
discovered in pairs of coupled limit cycle oscillators, also
as a consequence of non-equilibrium symmetry-breaking
pitchfork bifurcations [49, 50]. Here we discover their
emergence in a simple model of hydrodynamic- and basal-
body-coupled flagella. Intermediate equilibrium states
appear when the internal elastic interaction promoting IP
coordination is approximately compensated by the lead-
ing order hydrodynamic coupling favouring AP, amplify-
ing the importance of higher-order hydrodynamic effects.
In this parameter range, the oscillators are able to sus-
tain a stable difference in their average amplitude (exter-
nal rotor radii). Interestingly, the permanent difference
in the average radii of the two oscillators after the bi-
furcation could be easily interpreted by an observer as a
difference in intrinsic frequency (since w « 1/Ry). The
rotors would then appear intrinsically different despite in
fact being identical. Eventually, a sufficient increase of
the internal stiffness can overcome the antagonistic effect
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FIG. 4. Transitions between synchronization states mediated by basal body coupling. Radial dynamics are again fast compared
to phase dynamics (A = 10x Ao = 4x 107 Nm™'). (a) Steady state {o(t)) as a function of k, for various ciliary spacings (I = 15,
20, 25, 35, 50, 100 um). Numerical solutions (smooth, coloured) are shown alongside analytical predictions to leading order
(dashed, black) and second order in R/l (dashed, coloured). The transition zone boundaries are quantified by (o (t)) = 0.027
(red crosses) and (o (t)) = 0.987 (blue crosses) respectively. (b) These are shown as a function of [, together with leading order
(black) and second order in Ry/l (coloured) analytical predictions.

of hydrodynamic interactions at any given separation I,
and drive the system to a stable IP state.

IV. THE FULL MODEL

We conclude by looking at the full system with real-
istic parameters throughout (see Table I). In this case,
radial and phase dynamics have comparable timescales
(Cw/27\ ~ 2) and the radii cannot be considered as ap-
proximately slaved to the phases anymore. Together with
the sizeable radial deformations (6R/Ry ~ Ro/2l here
and ~ 0.2 for Chlamydomonas-like I = 15 ym) this re-
sults in a complex interplay between radial and phase
variables, and implies the need to consider the full sys-
tem of governing equations (see Supplementary Informa-
tion S1). These will be explored here through numerical
simulations only.

Figure 5a,b shows a representative set of curves for
a ky sweep with k, = 5 x 1073 Nm™! and [ = 15 pm.
Supplementary movies 1-5 show the dynamics for panels
(i)—(v) respectively. Similarly to the case of stiffer flag-
ella, low and high values of k, correspond respectively
to AP (panels (i)) and IP (panels (v)) synchronization,
and in these states the oscillators follow the same dynam-
ics. The average phase speed, however, is observed to be
lower in IP than in AP (a difference of ~ 13% between
ky =0 Nm~! and ky, = 0.02 Nm~1), in qualitative agree-
ment with experimental observations of CR mutants [41]
(see Supplementary Information S3). In between, there
is a range of k, values for which the system synchronizes
around intermediate values of (o), with the two oscilla-
tors following again different limit cycles (panels (iii,iv)).
A new state, however, appears as k, approaches the sym-
metry breaking transition from the AP side (panels (ii)).
Despite corresponding formally to AP ((¢) = 0), the sys-
tem displays symmetric excursions in the relative phase
difference which are long lived and not much smaller than
7. In this state, the oscillators spend most of their time

at values of o far from 0, and the null average is only
guaranteed by the symmetry of the dynamics. Although
the system oscillates here by about 7/3, amplitudes ~ 7
can be easily obtained just by increasing a (Supplemen-
tary Information Fig. S2). In this condition the system
will not appear synchronized in AP at all, but will rather
be continuously alternating between IP at w and IP at
—m. Figure 5c,e shows that this situation is typical for
all of the separations displaying a discontinuous, rather
than continuous, transition out of the AP state (here all
[ < 35pum). In the IP case, instead, the transition main-
tains its continuous nature throughout, and in fact the
bifurcation point is still well predicted by the first order
expression from Eq. (5) (see inset).

From the AP side, discontinuous transitions are al-
ways preceded by a region of k, values where the sys-
tem displays a large excursion dynamics, which there-
fore acts as a predictor of the impending discontinuity
[51]. Figure 5e shows the variance, (o(t)?) — (o(t))?, of
the time-dependent signal, o(t), averaged over 7 seconds
(> 300 beats). The large excursions evident in Fig. 5a(ii)
manifest in the peak of Fig. be.

The presence of the discontinuity in (o), and the pre-
ceding large fluctuations, depend on both the separation {
and k,, as shown in Fig. 6 for a (k,, k) parameter sweep.
For the realistic inter-flagellar separation (I = 15um),
Fig. 6a shows that the region of discontinuous transition
out of AP, marked by the large standard deviation of
o(t), exists only for k, < 9 x 1073 Nm~'. Above this
value, the bifurcation changes its nature and becomes
continuous but sharp. At the slightly larger separation
of | = 25um, the width of the extended transition zone
observed previously for k, <9 x 1073 Nm ™! is reduced
(see Figs. 6b, 5¢). Further increasing the separation to
I = 100 pm reduces hydrodynamic forces by an order of
magnitude compared to the | = 15 um case, and for all
the k, values explored, the system follows a sharp con-
tinuous transition from AP to IP as k, is increased.

Although exploring in detail the nature of these bifur-
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Results are shown for k, = 0.0055, 0.006, 0.007, 0.017, 0.020 Nm™' with k, = 0.005 Nm™' and

!l = 15um. For intermediate values of k,, the external rotors possess a permanent difference in their intrinsic frequencies.
Supplementary movies 1-5 show the dynamics for panels (i)-(v) respectively. (c) Value of (o(t)) as a function of k, for various
values of [ (results shown for [ = 15, 20, 25, 35, 50, 100 um). The transition zone boundaries are quantified by (c(t)) = 0.027
(red crosses) and (o(t)) = 0.987 (blue crosses) respectively; dashed black lines show far-field analytical predictions to leading
order (from Eq. (5)). (d) Measured boundaries compared with leading-order far-field analytical results. (e) The variance of the
time-dependent phase sum, (o(t)?) — (o(t))?, for given values of k, and [, reveals large excursions in the phase sum prior to
the bifurcation (see panel (a)ii for the raw time-dependent signal).

cations is beyond the scope of the present work, clear sim-
ilarities with the case of stiff flagella suggest strongly that
the qualitative nature of the continuous transition is the
same in the two cases. We expect therefore the continu-
ous transitions to be supercritical pitchfork bifurcations
of limit cycles, inducing the observed symmetry break-
ing in the system (Fig. 5a (iii-iv)). For I < 35 um, the
emergence of a discontinuity in (o) implies that decreas-
ing k, can change the nature of the transition. Looking
closely at the discontinuous case, we find that there is an
extended region of overlap between the (o) = 0 and the
intermediate (o) branches (see Supplementary Informa-
tion S5). This is typical of a catastrophe-like transition

which, given the ¢ <> —o symmetry of the system, is
likely to be a subcritical pitchfork bifurcation.

Coexistence of three different states, all of which are lo-
cally stable for the dynamics, means that the system dis-
plays multi-stability: presence of noise might then induce
the system to jump between these locally stable states
and therefore alternate between periods of AP synchro-
nization an other non-trivial types of coordination, with
transitions dictated by escape rate arguments [52-54].
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by internal spring constants. Mean and standard deviation of
o(t) as functions of k, and k,, for external rotor separations (a)
I =15 pm, (b) I =25 pm, and (c) | = 100 pm. White dotted
lines correspond to the blue bifurcation plot in Fig. 5(c). For
small k5, the system is capable of supporting intermediate
phase-locked states, with 0 < (o (t)) < 7. However, for larger
k., an abrupt transition between AP and IP occurs.

V. CONCLUSIONS

While mechanisms for hydrodynamic-led synchroniza-
tion of cilia and flagella have been extensively studied
[12, 14, 20, 21, 23-27, 55|, the impact of direct intra-
cellular connections on flagellar dynamics is only starting
to be recognised [15, 39, 40]. Here we have extended a
simple and popular minimal model for the hydrodynam-
ically interacting flagella pair of Chlamydomonas to ac-
count for intracellular mechanical coupling. The clearly
anisotropic ultrastructure of striated fibres [42] is mir-
rored in the use of a non-isotropic elastic interaction be-
tween the oscillators (k, # k), and results in a phase-
phase coupling that can promote by itself either IP or AP
synchronization, within a biologically plausible range of
Young’s moduli. Transitions would then result simply
through changes in the relative magnitude of k, and k.
Given that intracellular calcium can control the contrac-
tion of striated fibres in Chlamydomonas [56], we hypoth-
esise that the transitions in coordination observed exper-
imentally could be the result of localised apical varia-
tions in cytoplasmic [Ca®*] [57-59]. Natural extensions
of this model to amplitude-phase coupling do not influ-
ence the leading order coordination dynamics (see Sup-
plementary Information S1 for brief discussion) and have

been omitted here. In-phase coordination has recently
been proposed to result from a different nonlinear inter-
play between hydrodynamic and intracellular mechanical
coupling [15], with AP due to either one of them oper-
ating in isolation. However, several experimental obser-
vations, from the absence of phase-locking in mutants
lacking striated fibres [39, 40|, to the complex synchro-
nization observed in multi-flagellated algae [40], suggest
that hydrodynamics plays in fact only a minimal role in
this system. The model introduced here can sustain both
AP and IP states without the need for external coupling,
through a mechanism potentially under the direct control
of the cell. Unequal tightening of the different fibres join-
ing the basal bodies of cells with more than two flagella
could then lead to the complex synchronization patterns
observed experimentally [40]. Yet, subtle hydrodynamic
effects can exist, and need to be investigated through
dedicated experiments blocking fluid-mediated coupling
between flagella. These are currently underway.

With coordination of cilia and flagella within single
cells being sensitive to the direct intracellular coupling
between the filaments, we believe that better understand-
ing its emergence will eventually enable synchronization
to be used as a new and sensitive probe for the intracel-
lular mechanical state of a cell.
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