254 research outputs found

    Diagnosis: heart contusion?

    Get PDF

    SURVEY OF VIRUS PATHOGENS IN GLADIOLUS, IRIS, AND TULIP IN THE CZECH REPUBLIC

    Get PDF
    Abstract DURAISAMY, G. S., POKORNÝ, R.: Survey of virus pathogens in gladiolus, iris and tulips in the Czech The occurrence of Bean yellow mosaic virus (BYMV), Cucumber mosaic virus (CMV) Tobacco rattle virus (TRV) in gladiolus, iris, tulip and Iris yellow spot virus (IYSV) in iris was investigated by examining the plants by the means of serological techniques (ELISA). ELISA was applied to determine the presence of BYMV, CMV, TRV infections in both aerial and underground parts of gladiolus, iris, and tulip, and IYSV on the aerial parts of iris, respectively. 262 gladiolus plants were tested. 63.7% was infected by BYMV, 29.4 % by CMV, and 2.7 % by TRV. Out of 180 plants of iris, 1.1% was infected by BYMV, 6.7% by CMV, 2.8% by TRV, and 0% by IYSV. Out of 28 plants of tulip, 28.6% was infected by CMV, and 7.1% by TRV. ELISA proved to be a suitable method for detection of viruses in leaves of these ornamental plants, but it o en failed to detect viruses in fl owers and corms. A high transmission of BYMV by gladiolus cormlets was also found

    Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor

    Full text link
    In this paper we provide a sufficient condition, in terms of only one of the nine entries of the gradient tensor, i.e., the Jacobian matrix of the velocity vector field, for the global regularity of strong solutions to the three-dimensional Navier-Stokes equations in the whole space, as well as for the case of periodic boundary conditions

    Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles. III. The Role of Sodium and the Head Echo Size on the Probability of Detection

    Get PDF
    We present a path forward on a long-standing issue concerning the flux of small and slow meteoroids, which are believed to be the dominant portion of the incoming meteoric mass flux into the Earth's atmosphere. Such a flux, which is predicted by dynamical dust models of the Zodiacal Cloud, is not evident in ground-based radar observations. For decades this was attributed to the fact that the radars used for meteor observations lack the sensitivity to detect this population, due to the small amount of ionization produced by slow-velocity meteors. Such a hypothesis has been challenged by the introduction of meteor head echo (HE) observations with High Power and Large Aperture radars, in particular the Arecibo 430 MHz radar. Janches et al. developed a probabilistic approach to estimate the detectability of meteors by these radars and initially showed that, with the current knowledge of ablation and ionization, such particles should dominate the detected rates by one to two orders of magnitude compared to the actual observations. In this paper, we include results in our model from recently published laboratory measurements, which showed that (1) the ablation of Na is less intense covering a wider altitude range; and (2) the ionization probability, βip for Na atoms in the air is up to two orders of magnitude smaller for low speeds than originally believed. By applying these results and using a somewhat smaller size of the HE radar target we offer a solution that reconciles these observations with model predictions

    Modeling Meteoroid Impacts on the Juno Spacecraft

    Get PDF
    Events which meet certain criteria from star-tracker images on board the Juno spacecraft have been proposed to be due to interplanetary dust particle impacts on its solar arrays. These events have been suggested to be caused by particles with diameters larger than 10 &mu;m. Here, we compare the reported event rates to expected dust-impact rates using dynamical meteoroid models for the four most abundant meteoroid/dust populations in the inner solar system. We find that the dust-impact rates predicted by dynamical meteoroid models are not compatible with either the Juno observations in terms of the number of star-tracker events per day, or with the variations of dust flux on Juno's solar panels with time and position in the solar system. For example, the rate of star-tracker events on Juno's antisunward surfaces is the largest during a period in which Juno is expected to experience the peak impact fluxes on the opposite, sunward hemisphere. We also investigate the hypothesis of dust leaving the Martian Hill sphere originating either from the surface of Mars itself or from one of its moons. We do not find such a hypothetical source to be able to reproduce the star-tracker event-rate variations observed by Juno. We conclude that the star-tracker events observed by Juno are unlikely to be the result of instantaneous impacts from the zodiacal cloud. &nbsp;</p

    A Relational Model for Environmental and Water Resources Data

    Get PDF
    Environmental observations are fundamental to hydrology and water resources, and the way these data are organized and manipulated either enables or inhibits the analyses that can be performed. The Observations Data Model presented here provides a new and consistent format for the storage and retrieval of point environmental observations in a relational database designed to facilitate integrated analysis of large data sets collected by multiple investigators. Within this data model, observations are stored with sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and to provide traceable heritage from raw measurements to useable information. The design is based upon a relational database model that exposes each single observation as a record, taking advantage of the capability in relational database systems for querying based upon data values and enabling cross‐dimension data retrieval and analysis. This paper presents the design principles and features of the Observations Data Model and illustrates how it can be used to enhance the organization, publication, and analysis of point observations data while retaining a simple relational format. The contribution of the data model to water resources is that it represents a new, systematic way to organize and share data that overcomes many of the syntactic and semantic differences between heterogeneous data sets, thereby facilitating an integrated understanding of water resources based on more extensive and fully specified information

    Use of cement suspension as an alternative matrix material for textile-reinforced concrete

    Get PDF
    Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance

    Role of air humidity in residual fatigue lifetime of railway axle

    Get PDF
    This research was funded by grant No. CK03000060 “Advanced design methodology of railway axles for safe and efficient operation” of The Technology Agency of the Czech Republic
    corecore