1,267 research outputs found

    Characterization of Jets in Relativistic Heavy Ion Collisions

    Full text link
    Jet quenching is considered to be one of the signatures of the formation of quark gluon plasma. In order to investigate the jet quenching, it is necessary to detect jets produced in relativistic heavy ion collisions, determine their properties and compare those with the jets one obtains in hadron-hadron or e+ee^+-e^- collisions. In this work, we propose that calculation of flow parameters may be used to detect and characterize jets in relativistic heavy ion collisions.Comment: 18 pages, 4 figures, more discussions are added, to be published in Phys. Rev.

    Li-Fraumeni Syndrome Patient-derived LFS50 Progression Cell Series as an Experimental Model for Breast Cancer Prevention Research

    Get PDF
    poster abstractLi-Fraumeni syndrome (LFS) is a cancer predisposition syndrome associated with germline mutations in the tumor suppressor gene TP53. Breast cancer (BC) is the most common tumor amongst women with LFS, who have increased risk for premenopausal BC before age 40 and a lifetime risk of 49% by the age of 60. Non-malignant, human mammary epithelial cells (HMECs) were derived from the contralateral breast tissue of LFS patient (LFS50) undergoing BC surgery. The LFS50 HMEC progression series comprises of pre-immortal (HME50), spontaneously immortalized (HME50-5E), hTERT-immortalized (HME50hTERT or HME50hT), and tumorigenic (HMET) which can be modeled to represent breast cancer progression. Gene expressions of the LFS50 series were profiled using HG-U133_Plus_2 Affymetrix chip. By hierarchical clustering, the LFS50 cells were observed to have significant differential expression of genes and ANOVA results revealed that EMT-related genes (e.g., epithelial membrane protein 3, p= 6.84911E-19; E-cadherin, p= 8.66098E-19; and Keratin 5, p= 9.73095E-19) to be the most differentially expressed amongst the LFS50 cells. Ingenuity Pathway Analysis (IPA) confirmed that Ecadherin and Keratin 5 were the top most differentially expressed genes as well as G2/M DNA Damage Checkpoint Regulation (p= 2.67E-05), Estrogen-mediated S-phase Entry (p=3.32E-04) Mitotic Roles of Polo-Like Kinase (p=5.5E-04) as few of the top canonical pathways. Furthermore, to identify the type of breast cancer that LFS50 series could model, the triple negative breast cancer (TNBC) subtyping database tool predicted that each of the LFS50 strains could be classified as a different subtype. Finally, as a proof of principle for drug targeting, treatment of the LFS50 series with PRIMA-1, a p53 rescue drug, using 3D cultures resulted in a reduction in acini size of the pre-invasive LFS50 cells (p<0.05). Therefore, this progression series can serve as a resource for drug target discovery and breast cancer prevention research

    Investigation of ferromagnetic domain behavior and phase transition at nanoscale in bilayer manganites

    Full text link
    Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La22x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 with x=0.38x=0.38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curie temperature within the aba-b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. The ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites

    Meson-Baryon Form Factors in Chiral Colour Dielectric Model

    Get PDF
    The renormalised form factors for pseudoscalar meson-baryon coupling are computed in chiral colour dielectric model. This has been done by rearranging the Lippmann-Schwinger series for the meson baryon scattering matrix so that it can be expressed as a baryon pole term with renormalized form factors and baryon masses and the rest of the terms which arise from the crossed diagrams. Thus we are able to obtain an integral equation for the renormalized meson-baryon form factors in terms of the bare form factors as well as an expression for the meson self energy. This integral equation is solved and renormalized meson baryon form factors and renormalized baryon masses are computed. The parameters of the model are adjusted to obtain a best fit to the physical baryon masses. The calculations show that the renormalized form factors are energy-dependent and differ from the bare form factors primarily at momentum transfers smaller than 1 GeV. At nucleon mass, the change in the form factors is about 10% at zero momentum transfer. The computed form factors are soft with the equivalent monopole cut-off mass of about 500 MeV. The renormalized coupling constants are obtained by comparing the chiral colour dielectric model interaction Hamiltonian with the standard form of meson-nucleon interaction Hamiltonian. The ratio of ΔNπ\Delta N\pi and NNπNN\pi coupling constants is found to be about 2.15. This value is very close to the experimental value.Comment: 16 pages, 7 postscript figure

    Dihyperon in Chiral Colour Dielectric Model

    Full text link
    The mass of dihyperon with spin, parity Jπ=0+J^{\pi}=0^{+} and isospin I=0I = 0 is calculated in the framework of Chiral colour dielectric model. The wave function of the dihyperon is expressed as a product of two colour-singlet baryon clusters. Thus the quark wave functions within the cluster are antisymmetric. Appropriate operators are then used to antisymmetrize inter-cluster quark wave functions. The radial part of the quark wavefunctions are obtained by solving the the quark and dielectric field equations of motion obtained in the Colour dielectric model. The mass of the dihyperon is computed by including the colour magnetic energy as well as the energy due to meson interaction. The recoil correction to the dihyperon mass is incorporated by Peierls-Yoccoz technique. We find that the mass of the dihyperon is smaller than the ΛΛ\Lambda-\Lambda threshold by over 100 MeV. The implications of our results on the present day relativistic heavy ion experiments is discussed.Comment: LaTeX, 13 page

    Axial Vector Coupling Constant in Chiral Colour Dielectric Model

    Full text link
    The axial vector coupling constants of the β\beta decay processes of neutron and hyperon are calculated in SU(3) chiral colour dielectric model (CCDM). Using these axial coupling constants of neutron and hyperon, in CCDM we calculate the integrals of the spin dependent structure functions for proton and neutron. Our result is similar to the results obtained by MIT bag and Cloudy bag models.Comment: 9 pages, Latex file, no figure, to appear in Phys. Rev.

    The STAR Photon Multiplicity Detector

    Full text link
    Details concerning the design, fabrication and performance of STAR Photon Multiplicity Detector (PMD) are presented. The PMD will cover the forward region, within the pseudorapidity range 2.3--3.5, behind the forward time projection chamber. It will measure the spatial distribution of photons in order to study collective flow, fluctuation and chiral symmetry restoration.Comment: 15 pages, including 11 figures; to appear in a special NIM volume dedicated to the accelerator and detectors at RHI

    Working Group Report: Heavy-Ion Physics and Quark-Gluon Plasma

    Get PDF
    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of Quark-Gluon Plasma believed to have created in heavy-ion collisions and in early universe are reported.Comment: 20 pages, 6 eps figures, Heavy-ion physics and QGP activity report in "IX Workshop on High Energy Physics Phenomenology (WHEPP-09)" held in Institute of Physics, Bhubaneswar, India, during January 3-14, 2006. To be published in PRAMANA - Journal of Physics (Indian Academy of Science

    A Honeycomb Proportional Counter for Photon Multiplicity Measurement in the ALICE Experiment

    Full text link
    A honeycomb detector consisting of a matrix of 96 closely packed hexagonal cells, each working as a proportional counter with a wire readout, was fabricated and tested at the CERN PS. The cell depth and the radial dimensions of the cell were small, in the range of 5-10 mm. The appropriate cell design was arrived at using GARFIELD simulations. Two geometries are described illustrating the effect of field shaping. The charged particle detection efficiency and the preshower characteristics have been studied using pion and electron beams. Average charged particle detection efficiency was found to be 98%, which is almost uniform within the cell volume and also within the array. The preshower data show that the transverse size of the shower is in close agreement with the results of simulations for a range of energies and converter thicknesses.Comment: To be published in NIM

    Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    We report a measurement of high-p_T inclusive pi^0, eta, and direct photon production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0 gamma gamma were detected in the Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross section measurement by STAR is also presented, the signal was extracted statistically by subtracting the pi^0, eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading order perturbative QCD calculations.Comment: 28 pages, 30 figures, 6 tables, the updated version that was accepted by Phys. Rev.
    corecore