120 research outputs found

    Skin, hair and beyond: the impact of menopause.

    Get PDF
    The skin is an endocrine organ and a major target of hormones such as estrogens, androgens and cortisol. Besides vasomotor symptoms (VMS), skin and hair symptoms often receive less attention than other menopausal symptoms despite having a significant negative effect on quality of life. Skin and mucosal menopausal symptoms include dryness and pruritus, thinning and atrophy, wrinkles and sagging, poor wound healing and reduced vascularity, whereas skin premalignant and malignant lesions and skin aging signs are almost exclusively caused by environmental factors, especially solar radiation. Hair menopausal symptoms include reduced hair growth and density on the scalp (diffuse effluvium due to follicular rarefication and/or androgenetic alopecia of female pattern), altered hair quality and structure, and increased unwanted hair growth on facial areas. Hormone replacement therapy (HRT) is not indicated for skin and hair symptoms alone due to the risk–benefit balance, but wider potential benefits of HRT (beyond estrogen’s effect on VMS, bone, breast, heart and blood vessels) to include skin, hair and mucosal benefits should be discussed with women so that they will be able to make the best possible informed decisions on how to prevent or manage their menopausal symptoms.post-print1529 K

    Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support

    Get PDF
    BACKGROUND: Nucleic acids detection using microarrays requires labelling of target nucleic acids with fluorophores or other reporter molecules prior to hybridization. RESULTS: Using surface-bound peptide nucleic acids (PNA) probes and soluble fluorescent cationic polythiophenes, we show a simple and sensitive electrostatic approach to detect and identify unlabelled target nucleic acid on microarray. CONCLUSION: This simple methodology opens exciting possibilities for applied genetic analysis for the diagnosis of infections, identification of genetic mutations, and forensic inquiries. This electrostatic strategy could also be used with other nucleic acid detection methods such as electrochemistry, silver staining, metallization, quantum dots, or electrochemical dyes

    Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles

    Get PDF
    Based on experimental concentration depth profiles of the antiinflammatory drug dexamethasone in human skin, we model the time-dependent drug penetration by the 1D general diffusion equation that accounts for spatial variations in the diffusivity and free energy. For this, we numerically invert the diffusion equation and thereby obtain the diffusivity and the free-energy profiles of the drug as a function of skin depth without further model assumptions. As the only input, drug concentration profiles derived from X-ray microscopy at three consecutive times are used. For dexamethasone, skin barrier function is shown to rely on the combination of a substantially reduced drug diffusivity in the stratum corneum (the outermost epidermal layer), dominant at short times, and a pronounced free-energy barrier at the transition from the epidermis to the dermis underneath, which determines the drug distribution in the long-time limit. Our modeling approach, which is generally applicable to all kinds of barriers and diffusors, allows us to disentangle diffusivity from free-energetic effects. Thereby we can predict short-time drug penetration, where experimental measurements are not feasible, as well as long-time permeation, where ex vivo samples deteriorate, and thus span the entire timescales of biological barrier functioning

    A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    Get PDF
    A novel, centrifugal disk-based micro-total analysis system (mu TAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude.open121

    Mol Cell Proteomics

    Get PDF
    Protein biochips have a great potential in future parallel processing of complex samples as a research tool and in diagnostics. For the generation of protein biochips, highly automated technologies have been developed for cDNA expression library production, high throughput protein expression, large scale analysis of proteins, and protein microarray generation. Using this technology, we present here a strategy to identify potential autoantigens involved in the pathogenesis of alopecia areata, an often chronic disease leading to the rapid loss of scalp hair. Only little is known about the putative autoantigen(s) involved in this process. By combining protein microarray technology with the use of large cDNA expression libraries, we profiled the autoantibody repertoire of sera from alopecia areata patients against a human protein array consisting of 37,200 redundant, recombinant human proteins. The data sets obtained from incubations with patient sera were compared with control sera from clinically healthy persons and to background incubations with anti-human IgG antibodies. From these results, a smaller protein subset was generated and subjected to qualitative and quantitative validation on highly sensitive protein microarrays to identify novel alopecia areata-associated autoantigens. Eight autoantigens were identified by protein chip technology and were successfully confirmed by Western blot analysis. These autoantigens were arrayed on protein microarrays to generate a disease-associated protein chip. To confirm the specificity of the results obtained, sera from patients with psoriasis or hand and foot eczema as well as skin allergy were additionally examined on the disease-associated protein chip. By using alopecia areata as a model for an autoimmune disease, our investigations show that the protein microarray technology has potential for the identification and evaluation of autoantigens as well as in diagnosis such as to differentiate alopecia areata from other skin diseases

    Development of a single tube 640-plex genotyping method for detection of nucleic acid variations on microarrays

    Get PDF
    Detection of DNA sequence variation is critical to biomedical applications, including disease genetic identification, diagnosis and treatment, drug discovery and forensic analysis. Here, we describe an arrayed primer extension-based genotyping method (APEX-2) that allows multiplex (640-plex) DNA amplification and detection of single nucleotide polymorphisms (SNPs) and mutations on microarrays via four-color single-base primer extension. The founding principle of APEX-2 multiplex PCR requires two oligonucleotides per SNP/mutation to generate amplicons containing the position of interest. The same oligonucleotides are then subsequently used as immobilized single-base extension primers on a microarray. The method described here is ideal for SNP or mutation detection analysis, molecular diagnostics and forensic analysis. This robust genetic test has minimal requirements: two primers, two spots on the microarray and a low cost four-color detection system for the targeted site; and provides an advantageous alternative to high-density platforms and low-density detection systems

    Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P)

    Get PDF
    BACKGROUND: Gaucher disease is a potentially severe lysosomal storage disorder caused by mutations in the human glucocerebrosidase gene (GBA). We have developed a multiplexed genetic assay for eight diseases prevalent in the Ashkenazi population: Tay-Sachs, Gaucher type I, Niemann-Pick types A and B, mucolipidosis type IV, familial dysautonomia, Canavan, Bloom syndrome, and Fanconi anemia type C. This assay includes an allelic determination for GBA allele c.1448T>C (L444P). The goal of this study was to clinically evaluate this assay. METHODS: Biotinylated, multiplex PCR products were directly hybridized to capture probes immobilized on fluorescently addressed microspheres. After incubation with streptavidin-conjugated fluorophore, the reactions were analyzed by Luminex IS100. Clinical evaluations were conducted using de-identified patient DNA samples. RESULTS: We evaluated a multiplexed suspension array assay that includes wild-type and mutant genetic determinations for Gaucher disease allele c.1448T>C. Two percent of samples reported to be wild-type by conventional methods were observed to be c.1448T>C heterozygous using our assay. Sequence analysis suggested that this phenomenon was due to co-amplification of the functional gene and a paralogous pseudogene (ΨGBA) due to a polymorphism in the primer-binding site of the latter. Primers for the amplification of this allele were then repositioned to span an upstream deletion in the pseudogene, yielding a much longer amplicon. Although it is widely reported that long amplicons negatively impact amplification or detection efficiency in recently adopted multiplex techniques, this assay design functioned properly and resolved the occurrence of false heterozygosity. CONCLUSION: Although previously available sequence information suggested GBA gene/pseudogene discrimination capabilities with a short amplified product, we identified common single-nucleotide polymorphisms in the pseudogene that required amplification of a larger region for effective discrimination

    The Phospholipid Scramblases 1 and 4 Are Cellular Receptors for the Secretory Leukocyte Protease Inhibitor and Interact with CD4 at the Plasma Membrane

    Get PDF
    Secretory leukocyte protease inhibitor (SLPI) is secreted by epithelial cells in all the mucosal fluids such as saliva, cervical mucus, as well in the seminal liquid. At the physiological concentrations found in saliva, SLPI has a specific antiviral activity against HIV-1 that is related to the perturbation of the virus entry process at a stage posterior to the interaction of the viral surface glycoprotein with the CD4 receptor. Here, we confirm that recombinant SLPI is able to inhibit HIV-1 infection of primary T lymphocytes, and show that SLPI can also inhibit the transfer of HIV-1 virions from primary monocyte-derived dendritic cells to autologous T lymphocytes. At the molecular level, we show that SLPI is a ligand for the phospholipid scramblase 1 (PLSCR1) and PLSCR4, membrane proteins that are involved in the regulation of the movements of phospholipids between the inner and outer leaflets of the plasma membrane. Interestingly, we reveal that PLSCR1 and PLSCR4 also interact directly with the CD4 receptor at the cell surface of T lymphocytes. We find that the same region of the cytoplasmic domain of PLSCR1 is involved in the binding to CD4 and SLPI. Since SLPI was able to disrupt the association between PLSCR1 and CD4, our data suggest that SLPI inhibits HIV-1 infection by modulating the interaction of the CD4 receptor with PLSCRs. These interactions may constitute new targets for antiviral intervention

    Novel HIV-1 Knockdown Targets Identified by an Enriched Kinases/Phosphatases shRNA Library Using a Long-Term Iterative Screen in Jurkat T-Cells

    Get PDF
    HIV-1 is a complex retrovirus that uses host machinery to promote its replication. Understanding cellular proteins involved in the multistep process of HIV-1 infection may result in the discovery of more adapted and effective therapeutic targets. Kinases and phosphatases are a druggable class of proteins critically involved in regulation of signal pathways of eukaryotic cells. Here, we focused on the discovery of kinases and phosphatases that are essential for HIV-1 replication but dispensable for cell viability. We performed an iterative screen in Jurkat T-cells with a short-hairpin-RNA (shRNA) library highly enriched for human kinases and phosphatases. We identified 14 new proteins essential for HIV-1 replication that do not affect cell viability. These proteins are described to be involved in MAPK, JNK and ERK pathways, vesicular traffic and DNA repair. Moreover, we show that the proteins under study are important in an early step of HIV-1 infection before viral integration, whereas some of them affect viral transcription/translation. This study brings new insights for the complex interplay of HIV-1/host cell and opens new possibilities for antiviral strategies

    DNA Fragmentation Simulation Method (FSM) and Fragment Size Matching Improve aCGH Performance of FFPE Tissues

    Get PDF
    Whole-genome copy number analysis platforms, such as array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) arrays, are transformative research discovery tools. In cancer, the identification of genomic aberrations with these approaches has generated important diagnostic and prognostic markers, and critical therapeutic targets. While robust for basic research studies, reliable whole-genome copy number analysis has been unsuccessful in routine clinical practice due to a number of technical limitations. Most important, aCGH results have been suboptimal because of the poor integrity of DNA derived from formalin-fixed paraffin-embedded (FFPE) tissues. Using self-hybridizations of a single DNA sample we observed that aCGH performance is significantly improved by accurate DNA size determination and the matching of test and reference DNA samples so that both possess similar fragment sizes. Based on this observation, we developed a novel DNA fragmentation simulation method (FSM) that allows customized tailoring of the fragment sizes of test and reference samples, thereby lowering array failure rates. To validate our methods, we combined FSM with Universal Linkage System (ULS) labeling to study a cohort of 200 tumor samples using Agilent 1 M feature arrays. Results from FFPE samples were equivalent to results from fresh samples and those available through the glioblastoma Cancer Genome Atlas (TCGA). This study demonstrates that rigorous control of DNA fragment size improves aCGH performance. This methodological advance will permit the routine analysis of FFPE tumor samples for clinical trials and in daily clinical practice
    corecore