188 research outputs found

    Does the Feeding Behaviour of Dairy Cows Differ When Fed Ryegrass Indoors vs. Grazing?

    Get PDF
    Dairy cows eating ryegrass ingest smaller boli when grazing than when fed indoors (93 vs. 142 g; Boudon et al., 2004). To investigate whether this difference in bolus affects feeding behaviour of the cows, an automated system (chewing halters) was used to monitor feeding behaviour of cows given ad libitum access to perennial ryegrass in individual feed troughs (indoor feeding, IF) or at pasture (grazing, GR)

    Variation Between Individuals in Voluntary Intake and Herbage Intake of Grazing Dairy Cows

    Get PDF
    Herbage intake and milk yield of unsupplemented grazing dairy cows are highly variable between animals within a herd (Delaby et al., 2001). The objective of this experiment was to describe the relationship between the individual voluntary intake (VI) of dairy cows measured before turnout and their herbage intake at grazing, at two herbage allowances

    Potential of legume-based grassland-livestock systems in Europe

    Get PDF
    European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future

    The profile of a narrow line after single scattering by Maxwellian electrons: relativistic corrections to the kernel of the integral kinetic equation

    Full text link
    The frequency distribution of photons in frequency that results from single Compton scattering of monochromatic radiation on thermal electrons is derived in the mildly relativistic limit. Algebraic expressions are given for (1) the photon redistribution function, K(nu,Omega -> nu',Omega'), and (2) the spectrum produced in the case of isotropic incident radiation, P(nu -> nu'). The former is a good approximation for electron temperatures kT_e < 25 keV and photon energies hnu < 50 keV, and the latter is applicable when hnu(hnu/m_ec^2) < kT_e < 25 keV, hnu < 50 keV. Both formulae can be used for describing the profiles of X-ray and low-frequency lines upon scattering in hot, optically thin plasmas, such as present in clusters of galaxies, in the coronae of accretion disks in X-ray binaries and AGNs, during supernova explosions, etc. Both formulae can also be employed as the kernels of the corresponding integral kinetic equations (direction-dependent and isotropic) in the general problem of Comptonization on thermal electrons. The K(nu,Omega -> nu',Omega') kernel, in particular, is applicable to the problem of induced Compton interaction of anisotropic low-frequency radiation of high brightness temperature with free electrons in the vicinity of powerful radiosources and masers. Fokker-Planck-type expansion (up to fourth order) of the integral kinetic equation with the P(nu -> nu') kernel derived here leads to a generalization of the Kompaneets equation. We further present (1) a simpler kernel that is necessary and sufficient to derive the Kompaneets equation and (2) an expression for the angular function for Compton scattering in a hot plasma, which includes temperature and photon energy corrections to the Rayleigh angular function.Comment: 29 pages, 17 figures, accepted for publication in ApJ, uses emulateapj.sty, corrects misprints in previous astro-ph versio

    Heating of gas inside radio sources to mildly relativistic temperatures via induced Compton scattering

    Get PDF
    Measured values of the brightness temperature of low-frequency synchrotron radiation emitted by powerful extragalactic sources reach 10^11--10^12 K. If some amount of nonrelativistic ionized gas is present within such sources, it should be heated as a result of induced Compton scattering of the radiation. If this heating is counteracted by cooling due to inverse Compton scattering of the same radio radiation, then the plasma can be heated up to mildly relativistic temperatures kT~10--100 keV. The stationary electron velocity distribution can be either relativistic Maxwellian or quasi-Maxwellian (with the high-velocity tail suppressed), depending on the efficiency of Coulomb collisions and other relaxation processes. We derive several easy-to-use approximate expressions for the induced Compton heating rate of mildly relativistic electrons in an isotropic radiation field, as well as for the stationary distribution function and temperature of electrons. We also give analytic expressions for the kernel of the integral kinetic equation (one as a function of the scattering angle and another for the case of an isotropic radiation field), which describes the redistribution of photons in frequency caused by induced Compton scattering in thermal plasma. These expressions can be used in the parameter range hnu<< kT<~ 0.1mc^2 (the formulae earlier published in Sazonov, Sunyaev, 2000 are less accurate).Comment: 22 pages, 7 figures, submitted to Astronomy Letter

    Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions

    Get PDF
    Coordination of this project was supported by the EU Commission through COST Action 852 ‘Quality legume-based forage systems for contrasting environments‘. A636 contribution to the research leading to these results has been conducted as part of the Animal Change project which received funding from the European Union’s Seventh Framework Programme (FP7/2007-20 13) under the grant agreement no. 266018.peer-reviewedCurrent challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self-sufficiency through home-grown crops, and reduced N losses to the environment. Such challenges were addressed in a continental-scale field experiment conducted over three years, in which the amount of total nitrogen yield (Ntot) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix) was quantified from four-species grass-legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2 fixing legumes and two non-fixing grasses.The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all three years. Ntot and thus Ngainmix increased with increasing legume proportion up to one third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures.Realized legume proportion in stands and the relative N gain in mixture (Ngainmix/Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix/Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass-legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels.We conclude that the use of grass-legume mixtures can substantially contribute to resource-efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a considerable potential for climate change mitigation.European Unio
    • …
    corecore