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25 Abstract 

26 Current challenges to global food security require sustainable intensification of agriculture 

27 through initiatives that include more efficient use of nitrogen (N), increased protein self- 

28 sufficiency through home-grown crops, and reduced N losses to the environment. Such 

29 challenges were addressed in a continental-scale field experiment conducted over three years, 

30 in which the amount of total nitrogen yield (Ntot) and the gain of N yield in mixtures as 

31 compared to grass monocultures (Ngainmix) was quantified from four-species grass-legume 

32 stands with greatly varying legume proportions. Stands consisted of monocultures and 

33 mixtures of two N2 fixing legumes and two non-fixing grasses. 

34 The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass 

35 monocultures at the majority of evaluated sites in all three years. Ntot and thus Ngainmix 

36 increased with increasing legume proportion up to one third of legumes. With higher legume 

37 percentages, Ntot
 and

 Ngainmix did not continue to increase. Thus, across sites and years, 

38 mixtures with one third proportion of legumes attained ~95% of the maximum Ntot acquired 

39 by any stand and had 57% higher Ntot than grass monocultures. 

40 Realized legume proportion in stands and the relative N gain in mixture (Ngainmix/Ntot in 

41 mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for 

42 legume proportion; R = 0.64, P = 0.010 for Ngainmix/Ntot in mixture). Nevertheless, the relative 

43 N gain in mixture was not correlated to site productivity (P = 0.5 00), suggesting that, within 

44 climatic restrictions, balanced grass-legume mixtures can benefit from comparable relative 

45 gains in N yield across largely differing productivity levels. 

46 We conclude that the use of grass-legume mixtures can substantially contribute to resource- 

47 efficient agricultural grassland systems over a wide range of productivity levels, implying 

48 important savings in N fertilizers and thus greenhouse gas emissions and a considerable 

49 potential for climate change mitigation. 
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50 Introduction 

51 Global food security is currently challenged by the increasing demands for food, including 

52 meat and milk, which arise through the continuing growth of the world’s population and  

53 consumption (Godfray et al., 2010; Smith & Gregory, 2013). At the same time, food 

54 production is significantly affected by competition between food, feed and bioenergy, 

55 demands from other economic sectors for land and water, and the need to mainta in and 

56 preserve ecosystem services and biodiversity (Thornton, 2010). Moreover, current food  

57 production is highly nitrogen (N) limited (Cassman et al., 2002), while the provision of 

58 industrial N is largely based on fossil energy and its multiple impacts on the environment 

59 (Galloway et al., 2008; Davidson, 2009; Canfield et al., 2010). Under a business-as-usual 

60 scenario, it must be assumed that any increase in food provision will further aggravate the 

61 pressure regarding the divergent demands for food security and environmental integrity 

62 (Tilman et al., 2002; Foley et al., 2005). This challenge has recently reinforced the need for 

63 more sustainable agriculture and sustainable intensification (Godfray et al., 2010; Foley et al., 

64 2011). 

65 

66 Sustainable intensification of agriculture aims to raise productivity while at the same time 

67 reduce its environmental impacts (Godfray et al., 2010; Foley et al., 2011; Lüscher et al., 

68 2014; Taube et al., 2014). In the face of the prevailing N limitation, rising costs of inorganic 

69 N fertilizers, and deleterious side-effects of excessive N application (Galloway et al., 2008; 

70 Canfield et al., 2010), increased sustainability and improved N self-sufficiency can be gained 

71 through home-grown N2 fixing crops. Currently, grassland-based livestock production of 

72 medium to high management intensity depends largely on high-yielding pure grass stands 

73 requiring large inputs of mineral N fertilizers. Production and distribution of mineral N 

74 fertilizers need large amounts of energy (Kitani et al., 1999) and their application can result in 
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75 substantial N losses as nitrate (Ledgard et al., 2009) and greenhouse gases (GHG) to the 

76 environment (Schils et al., 2013; Schmeer et al., 2014). For example, each kg of N produced 

77 as ammonium nitrate in the industrial Haber-Bosch process consumes 58 MJ of energy and 

78 emits 8.6 kg CO2 equivalents (Kitani et al., 1999; Ecoinvent Centre, 2010). Moreover, 

79 according to the guidelines of the IPCC (2006), for every 100 kg of N fertilizer added to the 

80 soil, on average 1.0 kg of N is emitted as N2O, a GHG that is approximately 300 times more 

81 potent than CO2. At the same time, European livestock systems depend strongly on protein 

82 imported from overseas. A major challenge, therefore, is to increase home-grown forage 

83 protein with reduced input of mineral N fertilizers and at the same time reduce N losses to the 

84 environment (Peyraud et al., 2009; Lüscher et al., 2014; Taube et al., 2014). 

85 

86 Grass-legume mixtures offer the benefit of symbiotic N2 fixation by legumes, which are able 

87 to utilize atmospheric N2 for their requirements and thereby produce more protein with less N 

88 input. The amount of symbiotic N2 fixation by legumes can be substantial and ranges from 

89 100 to 380 kg ha
-1

 year
-1

 in northern temperate/boreal regions (Ledgard & Steele, 1992; 

90 Carlsson & Huss-Danell, 2003). Grown in mixtures with grasses, legumes meet their own N 

91 demand by deriving more than 80% from symbiosis (Boller & Nösberger, 1987; Zanetti et al., 

92 1997; Nyfeler et al., 2011) and consequently, the relative availability of soil N increases for 

93 grasses (“N sparing”, Temperton et al., 2007). Besides symbiotic N2 fixation, other processes 

94 have been found to increase yield and efficiency in resource uptake by grass-legume mixtures. 

95 These include facilitation, that is, N transfer from legumes to grasses (Høgh-Jensen & 

96 Schjoerring, 1997; Pirhofer-Walzl et al., 2012; Rasmussen et al., 2013) and increased 

97 exploitation of soil resources through spatial (deep- and shallow-rooting) or temporal niche 

98 complementarity in resource uptake (van Ruijven & Berendse, 2005; Mueller et al., 2013). 

99 All of these processes can lead to considerable gains in N yield of mixtures compared to grass 
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100 monocultures; consequently, the use of such mixtures in agricultural grassland systems could 

101 allow substantial reductions in the application of industrial N fertilizers. 

102 

103 Inclusion of legumes in grassland management has been proposed as an important strategy for 

104 climate change mitigation in the agricultural sector (Smith et al., 2008; Smith & Gregory, 

105 2013; Bustamante et al., 2014). The use of grass-legume mixtures in temporary grassland is 

106 widely applicable and does not necessarily compromise harvest yield, thereby improving 

107 agricultural efficiency (Kirwan et al., 2007; Finn et al., 2013). Moreover, the application is 

108 practical and robust, as demonstrated over many years by the “Swiss Standard Mixtures” that 

109 use up to eight species of grasses and legumes in temporary grassland to improve legume 

110 persistence under various pedo-climatic conditions (Frey, 1955; Suter et al., 2012). Grass- 

111 legume mixtures offer also a sustainable farm management practice: there is no evidence of 

112 significant emissions of N2O arising from the process of symbiotic N2 fixation (Rochette & 

113 Janzen, 2005; Barton et al., 2011) and thus, N2 fixation has been removed as a direct source 

114 of N2O in the revised GHG guidelines of the IPCC (2006). Finally, mixing grasses with 

115 legumes is a mitigation measure that can be implemented in the near future, which is an 

116 important feature for meeting emission reduction targets (Smith et al., 2013; Bustamante et 

117 al., 2014). 

118 

119 Although amounts of total N yield and N from symbiotic sources have been quantified in 

120 temperate grassland (Ledgard & Steele, 1992; Carlsson & Huss-Danell, 2003), data from 

121 arctic or continental ecosystems are rare. In such environments, low winter temperatures 

122 and/or precipitation may hamper the legumes’ growth, and accordingly, the benefit of  

123 including legumes in mixtures to achieve high gains in N yield may be limited. Absolute 

124 amounts of N from symbiosis seem to decrease at higher latitudes of Europe (Nesheim & 
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125 Oyen, 1994); however, there is no simple correlation between latitude and the N performance 

126 of legumes (Carlsson & Huss-Danell, 2003). Any large-scale geographic influence acts in 

127 concert with local pedo-climatic conditions that also interact with the type and intensity of 

128 management, all of which may strongly affect the legumes’ growth.  

129 

130 The COST Action 852 entitled “Quality legume-based forage systems for contrasting 

131 environments” (www.cost.eu/domains_actions/fa/Actions/852) aimed at increasing the 

132 quantity and quality of home-grown protein from regionally adapted legume-based forage 

133 systems. To this aim, a coordinated continental-scale field experiment was established, the 

134 “Agrodiversity Experiment”, focusing on intensively managed, mown temporary grassland as  

135 a model system. Monocultures and mixtures comprised of two grasses (non N2 fixing) and 

136 two legumes (N2 fixing), and were set up to result in a broad range of legume proportion in 

137 stands (Kirwan et al., 2007). Here, we report on the benefits of legumes to total N production 

138 in these grass, legume, and mixed swards by analyzing the total N yield (Ntot) and realized 

139 legume proportion of swards, and the potential N yield gain in mixtures as compared to grass 

140 monocultures (Ngainmix). To our knowledge, this is the first study to directly relate N yields in 

141 mixtures and monocultures to greatly differing stand legume proportions across largely 

142 contrasting pedo-climatic conditions, which will reveal the potential of these grassland 

143 systems for resource-efficient, sustainable agriculture through savings in N fertilizers and thus 

144 GHG emissions. The following specific questions were addressed: 

145 1. Is Ntot consistently higher in grass-legume mixtures as compared to grass monocultures? 

146 2. Is Ntot
 and

 Ngainmix affected by legume proportion in the sward? If yes, how much does the 

147 effect of legume proportion on Ntot
 and

 Ngainmix vary across sites? 

148 3. Is the effect of legume proportion on Ntot
 and

 Ngainmix persistent over three years? Does 

149 legume proportion itself persist over time? 

http://www.cost.eu/domains_actions/fa/Actions/852)
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150 4. Are realized legume proportion, Ntot in mixture, and the relative N gain in mixture 

151 (Ngainmix/Ntot in mixture) related to climatic variables and to productivity levels across 

152 sites? 
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153 Material and Methods 

154 Experimental design 

155 At each of sixteen sites and following a common protocol, four monocultures and eleven 

156 mixtures were established at two levels of seed density for a total of 30 stands per site. The 

157 sites spanned a gradient of climate from Atlantic to continental and from temperate to arctic 

158 (Fig. 1, Table S1, Supporting Information). Regarding climate and productivity, mean annual 

159 temperature of the sixteen sites ranged between 4.2 and 10.9 °C, precipitation between 492 

160 and 1556 mm year
~1

, and productivity of aboveground biomass between 2 and 14 t DM ha
~1

 

161 year
~1

 (see below). Full information to all sites is given in Kirwan et al. (2014), where 

162 geographic coordinates and further details on climate and soils are provided. The selection of 

163 species used for experimentation focused on i) species known to achieve high forage quantity 

164 and quality in systems of intensive grassland management, and ii) functional types of species 

165 that were expected to maximise complementarity in resource use. Four functional types of 

166 species were initially defined as the factorial combination of traits being associated with the 

167 manner of N acquisition (non N2 fixing grasses vs. N2 fixing legumes), and temporal pattern 

168 of species’ growth (fast establishment vs. temporally persistent), resulting in the following set: 

169 fast establishing grass (G1), temporally persistent grass (G2), fast establishing legume (L1), 

170 temporally persistent legume (L2). These four functional types were consistent across all  

171 sixteen sites although the species selected at sites varied depending on geographical region 

172 (Table 1). 

173 

174 The four monocultures consisted of one of each of G1, G2, L1, or L2, and mixtures contained 

175 all four functional types of species in varying relative abundances following a simplex design 

176 (Cornell, 2002). This was achieved by systematically varying the sown species proportions in 

177 mixtures (Table S2, Supporting Information) to result in four mixtures dominated in turn by 
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178 one species (70% of one species, 10% of the three others), six mixtures co-dominated in turn 

179 by pairs of species (40% of each of two species, 10% of the two others), and one mixture with 

180 equal species proportions (25% of each species). Doing so, sown legume proportions across 

181 different communities were 0, 20, 50, 80, and 100% (see also Kirwan et al., 2007 for further 

182 details on the design). 

183 

184 Maintenance and measurements 

185 Plots were fertilized with commercial N fertilizer. The amount was constant for all plots and 

186 for all years of experimental duration within individual sites, but varied among sites to range 

187 from 0 to 150 kg N ha
-1

 year
-1

 (Table S1, Supporting Information). This range of N 

188 application reflected background productivity levels across the large climatic gradient as well 

189 as variations in types and fertility of soils. Note that the maximum level of 150 kg N ha
-1

 year
- 

190 1 is far below highest levels of N application to grass monocultures in intensive grassland 

191 management and that N application of up to 150 kg ha
-1

 year
-1

 did not impair positive grass- 

192 legume interactions at one of the study sites (Nyfeler et al., 2009). Background levels of 

193 phosphorus and potassium in experimental plots were adjusted to non-limiting amounts 

194 (Kirwan et al., 2014). Aboveground biomass of plots was harvested several times per year 

195 following the agronomic practice at each site (Table S1, Supporting Information), and 

196 representative subsamples of harvested yield were sorted into the four sown and pooled 

197 unsown species. Drying to constant weight and summing over harvests allowed computing of  

198 the total harvested dry mass per year and species’ fractional contributions. Importantly, 

199 measurements were only recorded in the first three full years of production in this temporary 

200 grassland; thus, the sowing year was not considered. This restriction was imposed to evaluate 

201 the fully established system. 

202 
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203 Record of climatic data 

204 Data on climatic conditions were monitored by weather stations at each of the sixteen sites. 

205 Daily precipitation was summed and mean daily temperature was averaged across all days of 

206 the year to give annual precipitation and mean annual temperature per site. Moreover, daily 

207 minimum and maximum temperatures were used to compute the annual minima and maxima 

208 per site as the average of the ten days with most extreme values. This was of specific interest 

209 because extreme temperatures are assumed to especially impair legumes’  growth and N2 

210 fixation (Lynch & Smith, 1993; Zhang et al., 1995). 

211 

212 Analysis of N concentration in plant material 

213 Nitrogen concentration (Nconc) was measured at each harvest from a representative subsample 

214 of total harvested biomass from each plot, with biomass being dried to constant weight at 65 

215 °C and ground to pass through a 1 mm sieve. The value of Nconc of all samples was 

216 determined by near-infrared reflectance spectroscopy (NIRS) at one lab (Christian-Albrechts 

217 University, Kiel, Germany) using a NIRSystems 5000 monochromator (FOSS, Silver Spring, 

218 USA). See Appendix A, Supporting Information, for validation of the NIRS method. For a  

219 subset of sites, Nconc was not measured at all three experimental years and from all plots of the 

220 design (see Table S1, Supporting Information). Note that temporary grassland in crop rotation 

221 systems is generally maintained for a sowing year and one or two subsequent production 

222 years. Here, we measured Nconc for two production years for most sites (year 1 and 2), while 

223 half the sites also had data for a third year (year 3), resulting in a total of 350, 304, and 167 

224 analyzed plots in years 1, 2, and 3, respectively. Importantly, included sites covered the full 

225 pedo-climatic range in all years. There were a total of 36 site-years of data. 

226 
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227 Data analyses 

228 We aimed to analyze the total annual N yield (Ntot) per plot. To achieve this, values of Nconc of 

229 each harvest were first multiplied by total dry matter per harvest to receive the N yield per 

230 harvest and plot. Annual Ntot per plot was then computed as the sum over all harvests and 

231 reflects therefore an N output of the system that is seasonally weighted for variability in Nconc 

232 and biomass yield. 

233 

234 i) Comparisons of mixtures against grass monocultures 

235 Annual Ntot of mixtures was initially compared against Ntot of the average grass monoculture, 

236 as this comparison reflected a test of mixed stands (all of which included legumes) against 

237 stands sown only with grass species. Wilcoxon rank sum tests were applied for inference. 

238 

239 ii) Testing the effect of legume proportion on total nitrogen yield 

240 The effect of legume proportion (PLeg) the on annual Ntot was analyzed applying a regression 

241 approach following Nyfeler et al. (2011), which used the following basic notation: 

242 Ntot = flo + piP,,eg + p2PLeg2 + p3PLeg3 + aD + yDeltaBiomass + E eqn. 1 

243 In this formulation, PLeg denotes the summed proportions of the two legumes L1 and L2, 

244 using the harvested biomass proportions of the previous year (sown proportions were used for 

245 year 1) as predictor variables to overcome confounding effects of year-to-year changes in 

246 community composition on Ntot. Thus, Ni to )63 estimate the linear and non-linear effects of 

247 stand legume proportion on Ntot. The intercept, Po, gives the estimate of Ntot if PLeg = 0, i.e. 

248 for grass monocultures including potential weeds. The effect of seed density is estimated by 

249 a, with D denoting the level of seed density coded as -1 and +1 for low and high density, 

250 respectively, so all other terms are estimated at average density. The effect of fluctuations in 

251 stand biomass (DeltaBiomass) on the response variable is estimated by the y coefficient (for 
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252 details on computation of 

DeltaBiomass see Appendix A, Supporting Information). The error 

253 E is assumed normally distributed with zero mean and variance a2. 

254 

255 Equation 1 was extended to a linear mixed model where all coefficients were estimated for 

256 each of three years, and where random coefficients were added to estimate the general stand 

257 performance while allowing for variation across sites for each of the three years (Pinheiro & 

258 Bates, 2009) (see eqn. S1, Appendix A, Supporting Information, for detailed notation). 

259 Inference on fixed main effects of the linear mixed model was based on single term deletion 

260 2 and 
from a main effects model as specified in eqn. 1 (each effect in turn, including ~~eg 

261 3) and subsequent F-tests for comparison of models while applying the Kenward-Roger 
~~eg 

262 method to determine the approximate denominator degrees of freedom (Kenward & Roger,  

263 1997); interactions were similarly tested but from a model that included all effects. The range 

264 of legume proportion for which Ntot was significantly different from its maximum was 

265 computed using the Johnson Neyman technique (Johnson & Neyman, 1936) as applied in  

266 Suter et al. (2007). 

267 

268 In regressions of eqs. 1 and S1 (Appendix A, Supporting Information), species G1, G2, L1, 

269 and L2 are grouped into grasses and legumes according to their functional ability to fix N2 (or 

270 not), and such analysis does not include interactions between species regarding temporal 

271 pattern of species’ growth. This grouping was justifiable because preliminary analyses 

272 revealed that interactions affecting Ntot were mainly between non-fixing grasses and N2 fixing 

273 legumes, but to a far lesser extent between fast establishing and temporally persistent species 

274 within grasses and legumes (see Appendix A, Supporting Information, for details and 

275 inference on pooling individual species performances). 

276 



 

 

Global Change Biology Page 14 of 47 

14 

277 iii) Computing gain of N yield in mixture 

278 Total N yield in mixed grass-legume stands and the respective monocultures can be 

279 subdivided into different parts to illustrate the role of legumes and their interactions with 

280 grasses. In grass monocultures (legume proportion = 0), Ntot accumulated by the sward 

281 derives solely from the soil and from fertilizer N (quantity A, dashed white line for reference, 

282 Fig. 2). In legume monocultures (legume proportion = 1), Ntot is often greater (A + B), due 

283 mainly to symbiotic N2 fixation of legumes. Mixing grasses with legumes should lead 

284 therefore at first to a linear increase of accumulated N by the stand with increasing mixture 

285 legume proportion through the contribution of the legume component, i.e. through a constant 

286 amount of N added per unit of legumes (continuous white line). In addition, positive grass- 

287 legume interactions such as stimulation of the rate of symbiotic N2 fixation (% N derived 

288 from symbiosis in the legume) when grass is present (Nyfeler et al., 2011), N transfer (Høgh- 

289 Jensen & Schjoerring, 1997; Zanetti et al., 1997) or increased utilization of fertilizer and soil 

290 N resources through temporal and/or spatial niche complementarity (Mueller et al., 2013) can 

291 result in a nonlinear surplus of N yield (C, Fig. 2), resulting in a total N yield of A+B+C in 

292 mixed swards. 

293 

294 This study aimed to quantify the amount of N yield gain in mixtures as compared to grass 

295 monocultures. This was achieved by computing the difference between Ntot in mixture and 

296 Ntot in grass monoculture using the estimates of the regression model (based on eqn. S1, 

297 Appendix A, Supporting Information). This quantity of N yield gain in mixture is hereafter  

298 termed Ngainmix (= Ntot in mixture minus Ntot in grass monoculture, quantity B + C in Fig. 2), 

299 and was calculated both for the mean across all sites (using the fixed parameter estimates of  

300 the regression) and for each of the sixteen individual sites (using the variation around the 

301 fixed mean). Note that the quantity of Ngainmix reflects the total of N gain in mixture compared 
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302 to grass monoculture, but it does not allow quantification of the individual contributions from 

303 symbiotic N2 fixation, N transfer, more efficient exploitation of soil and fertilizer N, or N 

304 from any other source (e.g. decaying roots of legumes). 

305 

306 iv) Relating N data to productivity and climate 

307 To evaluate patterns in N dynamics over the environmental gradient, realized legume 

308 proportion, Ntot in mixture, and the relative N yield gain in mixture (Ngainmix/Ntot in mixture) 

309 were related to site productivity, annual precipitation, mean annual temperature, and 

310 minimum and maximum temperature. To increase the robustness of results, these calculations 

311 were based on site means across the first two experimental years. For consistent comparison, 

312 both Ntot in mixture and the relative N gain were calculated for a mixture with one third 

313 proportion of legumes and two thirds of grasses using a simplified linear mixed model (eqn. 

314 S2, Appendix A, Supporting Information). The ratio of proportions (1/3:2/3 legumes:grasses) 

315 could be justified from analyses that regressed Ntot on legume proportion (see results), and 

316 amounts of total N yield for this representative mixture are hereafter termed Ntotmix. Site 

317 productivity was estimated by averaging across the biomass yields of all grass monocultures.  

318 Pearson correlation and ordinary least squares regression were used to quantify relationships 

319 between legume proportion, Ntotmix, the relative N yield gain in mixture (Ngainmix/Ntotmix), and 

320 environmental variables (predictors) (see Table S4, Supporting Information, for site values of 

321 the five environmental variables, and Table S5 for their correlation matrix). All analyses were 

322 performed with the statistics software R (R Development Core Team, 2014).  
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323 Results 

324 Positive effect of grass-legume mixtures on total N yield 

325 Annual Ntot of mixtures was significantly greater than that of grass monocultures at the 

326 majority of evaluated sites in all years (Fig. 3), and approximated the values of Ntot in legume 

327 monocultures. In general, the positive mixture effect on Ntot was already evident in the first 

328 year and persisted over years (Fig. 3); however, no mixture effect on Ntot was apparent at the 

329 continental sites Lithuania_a (site 18; years 1 and 2), and Poland_a and Poland_b (sites 26 

330 and 27, all years). 

331 

332 Positive effect of legume proportion on total N yield and N yield gain in mixture 

333 Ntot was significantly affected by the proportion of legumes in mixtures. The effects of 

334 legume proportion on Ntot were similar across years and were maximal when legume 

335 proportions in mixtures were 60, 42, and 40% in years 1, 2, and 3, respectively (Fig. 4). More 

336 importantly, because Ntot was non-linearly affected by legume proportion (Table 2, Table S6, 

337 Supporting Information), Ntot was not significantly different from the maximum amount in 

338 mixture over a wide range of legume proportion (Fig. 4), and mixtures with approximately 

339 one third proportion of legumes attained 95% of maximum Ntot (Table 3). Ntot varied 

340 substantially among sites, with greatest (predicted) values in mixtures being as high as 480 kg 

341 N ha
~1

 year
~1

 at Ireland (site 15, year 1) and Switzerland (site 34, year 2), and smallest values 

342 in Iceland (sites 13 and 14: around 50 kg N ha
~1

 year
~1

; Fig. 4). 

343 

344 Because mixtures with approximately one third proportion of legumes attained 95% of the 

345 maximum Ntot (Table 3), further values for Ntot
 (and

 Ngainmix, below) were estimated for this 

346 representative mixture (1/3:2/3 legumes:grasses). Doing so, Ntotmix decreased by 12% between 
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347 years 1 and 2 (P = 0.09 for the difference in Ntotmix), and by a further 23% between years 2 

348 and 3 (P = 0.002). 

349 

350 Average annual values of Ngainmix across sites ranged between 108 and 76 kg ha
~1

 year
~1

 (years 

351 1 and 3, respectively), resulting in a relative N gain in mixture (Ngainmix/Ntotmix) that exceeded 

352 0.3 in all years (Table 3). Again, there was a large variation of Ngainmix among sites with 

353 amounts being as high as 280 kg ha
~1

 year
~1

 at Norway_a (site 22, year 1) but being close to 

354 zero at the continental sites Lithuania _a (site 18, year 1), Poland_a, and Poland_b (sites 26 

355 and 27, all years), suggesting that at these sites legumes in mixtures induced no gain in total N 

356 yield (Fig. 4). Compared to grass pure stands and averaged across sites, Ngainmix was 61, 46, 

357 and 64% in years 1, 2, and 3, respectively (calculated from Table 3), meaning that mixtures 

358 with only one third proportion of legumes had, on average across all years, 57% higher total 

359 N yield than pure grass stands. 

360 

361 Declining stand legume proportion over time 

362 Realized legume proportion in stands decreased generally over time: across sites, realized 

363 legume proportion was 32, 21, and 9% in years 1, 2, and 3, respectively. Regarding site 

364 variation, almost the full possible range was covered: over all swards with highly varying 

365 legume proportion in the seed mixture, Norway_a (site 22), Wales_a (35), and Switzerland  

366 (34) still had average legume proportions around 50% and maximal values exceeding 80% by 

367 year 2; in contrast, legumes were absent from the second year onward in Ireland (15) and had 

368 disappeared by the third year in Lithuania_c (20) (Fig. 4). 

369 
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370 Strong effect of minimum site temperature on legume proportion and N yield gain in mixture  

371 Out of the environmental variables tested, minimum site temperature most strongly impaired 

372 both stand legume proportion and the relative N yield gain in mixture (Fig. 5a & c), indicating 

373 that harsh environmental conditions hampered legumes’ growth (see Table S4, Supporting 

374 Information, for site values of Ntotmix
 and

 Ngainmix, and Table S7 for a summary of all 

375 regressions). Although to a weaker degree, low annual precipitation also impacted on both 

376 stand legume proportion and Ngainmix/Ntotmix (Fig. 5b & d). The parallel responses of legumes’ 

377 growth and relative N yield gain in mixture to these environmental parameters suggested that 

378 legume proportion and Ngainmix/Ntotmix were correlated to each other, which indeed was the 

379 case (Fig. 5e). Furthermore, Ntotmix was positively correlated to site productivity (R = 0.703, P 

380 = 0.003, Table S7, Supporting Information); however, the relative N yield gain in mixture was 

381 not (Fig. 5f). Taken together, this suggested that the relative N gain of a balanced grass- 

382 legume mixture was affected more by climatic conditions than by the largely differing  

383 productivity levels across sites. 
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384 Discussion 

385 Mixing grasses and legumes in agricultural grassland systems yielded considerable benefits to 

386 total N yield (Ntot) over a wide range of European environmental conditions. Averaged across 

387 sites and years, mixtures with only one third proportion of legumes had as much as 57% 

388 higher Ntot than pure grass stands, indicating a substantial N yield gain in mixtures (Ngainmix), 

389 and such mixtures attained amounts of Ntot close to the maximum Ntot acquired by any stand. 

390 The relative N yield gain in mixture (Ngainmix/Ntotmix) was not affected by the great differences 

391 in productivity levels across sites. This clearly highlights the potential of grass-legume 

392 mixtures as a practical management option for sustainable agriculture, and we elaborate on a 

393 number of relevant points below. 

394 

395 Substantial N yield advantage in mixtures as compared to grass monocultures 

396 Amounts of Ntot from the temperate sites of this study corresponded well to reports from 

397 comparable grass-legume systems (Boller & Nösberger, 1987; Høgh-Jensen & Schj oerring, 

398 1997; Carlsson & Huss-Danell, 2003 for review); however, this experiment also covered 

399 pedo-climatic regions that have been poorly investigated so far. At the majority of sites, the 

400 positive mixture effect on Ntot appeared in the first year, was maintained for the second year 

401 and was still apparent in five out of eight evaluated sites in the third year. In particular, the 

402 positive mixture effect on Ntot was apparent also at the Nordic sites in Iceland (sites 13 and 

403 14) and Tromsø-Norway (site 23), where absolute amounts of Ntot (Fig. 3) and harvested 

404 biomass yield (Finn et al., 2013) were comparably small. Highest N advantages of mixtures 

405 versus grass monocultures were more than 250 kg N ha
-1

 year
-1

 (Belgium (site 1), Switzerland 

406 (site 34), Fig. 3a) and resulted in a more than two-fold higher N output in mixed swards than 

407 in stands with grass only. Considering the substantial differences in site productivity, ranging 

408 between 2 and 14 t DM ha
-1

 year
-1

, and the substantial gain of Ntot in mixtures across sites and 
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409 years, the data clearly demonstrate the great potential of mixed grass-legume swards for 

410 resource-efficient production in varying pedo-climatic conditions. Using mixed swards 

411 instead of pure grass stands, more N yield can be expected for a given amount of N fertilizer 

412 applied. Alternatively, if the aim is to reduce fertilizer N application for financial, regulatory 

413 and/or environmental reasons (Godfray et al., 2010), our data show the potential to do so 

414 without necessarily compromising N yield and total harvested biomass (Nyfeler et al., 2009; 

415 Finn et al., 2013). 

416 

417 N yield gain in mixtures is evident over a wide range of legume proportion 

418 With few exceptions, Ntot demonstrated a considerable increase with increasing legume 

419 proportion up to about 30%. With higher percentages of legumes, Ntot did not continue to 

420 increase (Fig. 4). This is a highly valuable result. It indicates that almost all (~95%) of the 

421 maximum benefit to Ntot from mixing grasses and legumes can be achieved with a modest 

422 (~30%) legume proportion in the mixture. Moreover and equally relevant, the wide range for 

423 which Ntot was not different from maximum values indicates that the benefits of legumes 

424 regarding N gain in mixtures can prevail despite considerable fluctuations of grass-legume 

425 proportions in swards. This is an important feature for practical grassland management. 

426 

427 The method to compute Ngainmix has been previously used to calculate the amount of apparent 

428 symbiotic N2 fixation (Nsym) in grass-legume mixtures (“N-difference method“, e.g. Ledgard 

429 & Steele, 1992). The N-difference method has been criticized because it assumes that the 

430 cumulative uptake of N from soil and fertilizer of grasses and legumes in mixture would be 

431 the same as for the reference grass monoculture, which may not necessarily be the case 

432 (Boller & Nösberger, 1987; Nyfeler et al., 2011). The N-difference method therefore can lead 

433 to biased estimates of Nsym. At the Swiss site of our study, Nyfeler et al. (2011) used the more 
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434 accurate 
15

N dilution procedure to quantify Ntot, Nsym and N uptake from non-symbiotic 

435 sources (N derived from the soil and/or fertilizer). They demonstrated that, for a 50:50 

436 mixture of grasses and legumes and fertilizer N application of 50 kg ha
-1

 year
-1

, the N- 

437 difference calculation resulted in Nsym values that were 26% higher than the 
15

N dilution 

438 procedure in the first production year, while overestimation was 24% in the second year. For 

439 N applications of 150 kg ha
-1

 year
-1

, overestimation by the N-difference method became 

440 smaller, and was 17% and 7% in the first and second year, respectively. In Northern mixed 

441 grassland (Vågønes, Norway, 69°N) of Trifolium repens L. (white clover) and Phleum 

442 pratense L. (timothy) and no fertilizer N application, the overestimation of the N-difference 

443 method compared to 
15

N dilution was 7% and 36% in two production years, respectively 

444 (Nesheim & Oyen, 1994). Regarding our continental-scale experiment, Ngainmix corresponds to 

445 values of the N-difference calculation. It is important to realize that this difference method is 

446 appropriate to the purpose used here, namely to measure the total N gain achieved by the 

447 grass-legume mixture compared to the pure grass stand. However, because it appears that this 

448 difference method does not allow quantification of symbiotic N2 fixation and N uptake from 

449 non-symbiotic sources with acceptable accuracy, we do not aim to specify these different 

450 fractions. Nevertheless, the above assessment suggests that the great majority of Ngainmix is 

451 derived from N2 fixation of legumes (see also Boller & Nösberger, 1987; Zanetti et al., 1997). 

452 

453 This gain of N yield in mixtures due to the presence of legumes can be explained by various 

454 mechanisms. A linear increase in Ntot with increasing legume proportion can be expected 

455 solely through a constant additional N input to the system per unit of legumes (see B in Fig. 

456 2). However, because we found a highly nonlinear response of Ntot (Fig. 4, C in Fig. 2), 

457 positive interactions between grasses and legumes must have played a role, and we suggest  

458 four possible mechanisms. First, positive mixing effects have been attributed to stimulation of 
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459 the rate of symbiotic N2 fixation by N-demand from co-occurring grasses (Høgh-Jensen & 

460 Schjoerring, 1997). At the Swiss site, Nyfeler et al.(201 1) revealed that the rate (%) of N 

461 derived from symbiosis in the clover plants was significantly higher at low legume proportion 

462 than at high legume proportion. This pattern could be explained by strong competition from 

463 grasses for N from non-symbiotic sources: even if the grass component in mixture was 

464 reduced to 50%, grass still took up the same total amount of N from non-symbiotic sources as 

465 a stand with 100% grass (Nyfeler et al., 2011). Second, the presence of both grass and legume 

466 components in mixture allows for transfer of symbiotically fixed N from legumes to grasses. 

467 Quantification of apparent N transfer between legumes and grasses shows that more than 40% 

468 of the N nutrition of the grass component in mixture can derive from N2 fixation of the 

469 legumes (Boller & Nösberger, 1987; Høgh-Jensen & Schjoerring, 1997; Nyfeler et al., 2011) 

470 with N transfer being greatest in equilibrated mixtures. Third, the nonlinear response of N tot 

471 can be attributed to an increased capability of the grass component to acquire N from non- 

472 symbiotic sources in the presence of legumes (Nyfeler et al., 2011). Grasses have a denser 

473 root system (i.e. comparably higher root length density per unit soil volume and high root 

474 surface area of active absorption, Craine et al., 2002; Hill et al., 2006), which they use to 

475 outcompete the legumes in accessing the available mineral and fertilizer N. Fourth, increased 

476 utilization of fertilizer and soil N resources through temporal and/or spatial niche 

477 complementarity between grasses and legumes can also explain the positive mixing effects 

478 (van Ruijven & Berendse, 2005; Mueller et al., 2013). To conclude, the benefit of mixed 

479 swards to total N output of the system comes through significant grass-legume interactions. 

480 

481 Considerable mixing effects on total harvested biomass yield have recently been shown for 

482 the same sites as presented here (Finn et al., 2013). Finn et al. (2013) found transgressive 

483 overyielding (mixtures outperformed highest yielding monocultures, Trenbath, 1974) of about 
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484 20% (excluding weed biomass), indicating that mixtures produced more biomass than either  

485 grass or legume monocultures. To maximise both total N output and total biomass yield, 

486 while at the same time minimising the risk of N losses to the environment (Loiseau et al., 

487 2001; Nyfeler, 2009), we infer that an optimal range of legume proportion in mixtures should 

488 range between 30-50%. 

489 

490 Legume proportion and N yield gain in mixtures are affected by environmental conditions 

491 We found evidence that legume proportion and the relative N yield gain in mixture were 

492 negatively correlated with minimum winter temperatures and low annual precipitation (Fig.  

493 5). Much of the evidence on restrictions of legumes’ growth and symbiotic N2 fixation comes 

494 from studies in growth chambers (e.g. Nesheim & Boller, 1991; Lynch & Smith, 1993; Zhang  

495 et al., 1995; Serraj & Sinclair, 1996). Low temperature seems to hamper N2 fixation more 

496 than plant growth (Lynch & Smith, 1993; Zhang et al., 1995; Hartwig, 1998), and severe 

497 drought has been shown to disrupt nodule activity (Serraj & Sinclair, 1996; Serraj et al., 

498 1999). Such results accord with our findings gained under field conditions. However, because 

499 we did not directly measure symbiotic activity of legumes but demonstrated impacts of  

500 climate on legume proportion, we cannot conclude whether harsh climatic conditions  

501 impacted more on symbiotic N2 fixation or on legume plant growth. 

502 

503 A decrease in the legume proportion of mixed swards can be induced by application of N 

504 fertilizers. For example, in a related experiment (Nyfeler et al., 2009), different levels of 

505 mineral N were applied to grass-clover mixtures (two grass and two clover species) managed 

506 for three consecutive years. Here, N fertilization significantly affected clover proportion: 

507 averaged across years and all mixtures receiving 50 kg N ha
-1

 year
-1

, the two clover species 

508 (sum of both) achieved 41% proportional biomass; however, fertilized with 150 kg N ha
-1
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509 year
-1

, clover proportions were only 31% (Nyfeler et al., 2009). Comparable results were 

510 found by Nassiri & Elgersma (2002), where in only one growing season the application of  

511 150 kg N ha
-1

 year
-1

 reduced the clover content in dry matter harvest of perennial ryegrass- 

512 white clover mixtures to 12% compared to 43% without N application. Such impacts of N 

513 fertilizers on legume persistence might be of less importance in temporary grassland as part of 

514 crop rotation systems, where swards are generally maintained for a seeding year and one or 

515 two production years before they are ploughed for growing cereal crops. Moreover, although 

516 legumes might decrease over time, their positive effect on mixture biomass yield can still be 

517 prevalent even at low proportion (Nyfeler et al., 2009; Finn et al., 2013), which can be 

518 explained by strong grass-legume interactions as outlined above or by legacy effects (e.g. 

519 release of fixed N from decaying roots or increased N pools in soil organic matter derived 

520 from N2 fixation of preceding years). 

521 

522 In our experiment, positive effects of legumes on Ntot were still evident in year two and three 

523 (Fig. 3) despite the successive decrease in legume proportion, and mixtures with only one 

524 third proportion of legumes provided a significant gain in N yield as compared to pure grass 

525 stands (Fig. 4). This proves our experiment with sown temporary grassland to be a good 

526 model system to study the relation between legume proportions realized in the sward and N 

527 yield gain in mixtures, and this relation holds also for permanent grassland as long as 

528 adequate proportions of legumes can be maintained. Yet, the persistence of legumes in 

529 permanent grassland is challenging (Guckert & Hay, 2001), and our study implies that  

530 research should focus on sward management strategies to stabilize legume proportion under 

531 varying climatic conditions. Evidence suggests that adjusting N fertilizer rates and defoliation 

532 frequency can increase the abundance of white clover (Schwank et al., 1986; Hebeisen et al., 

533 1997; Lüscher et al., 2014), the most important legume species in permanent grassland of 
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534 temperate regions (Guckert & Hay, 2001). In our experiment, no specific actions were 

535 undertaken to counteract legume decrease. Also, realized legume proportion was not  

536 correlated to N application rates at sites (R = –0.219, P = 0.434), indicating that 

537 environmental conditions were more decisive for legume performance than N fertilizers at 

538 rates applied in our experiment. 

539 

540 Four sites merit further consideration. At the three continental sites Lithuania_a, Poland_a, 

541 and Poland_b, legumes established well in the first year and reached proportions of up to 

542 96%; nevertheless, N gains in mixture were not evident (Fig. 4a) suggesting that symbiotic N2 

543 fixation of the clovers did not work properly. We suspect that in concert with low winter 

544 temperatures hampering nodulation (Hartwig, 1998), lack of Rhizobia species in soils of the 

545 agronomically improved grassland may have prevented legumes to form an efficient  

546 symbiotic relationship. The situation is different for Ireland, where legumes were present and 

547 mixtures realized high gains of total N yield in the first year, but legumes disappeared from 

548 the second year onward. With minimum temperatures of -1° C, annual precipitation around 

549 the mean of the investigated range (932 mm year
~1

), and comparably high site productivity 

550 (14.1 t DM ha
~1

 year
~1

), climatic conditions cannot be responsible for the strong legume 

551 decline. Because the Irish site had been a highly fertilized monoculture of L. perenne 

552 grassland for many years preceding the experiment, we speculate that the very high soil 

553 fertility and resulting high competition from the grasses during the experiment may have 

554 hampered the legumes’ growth (Schwank et al., 1986). Also, Ireland had a soil pH of 5.3, 

555 being the lowest among sites (Kirwan et al., 2014), which may have hampered the growth of 

556 the two legume species. 

557 
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558 Taken together, it can be concluded that climatic conditions and the natural presence of 

559 Rhizobia species define a boundary for the performance of legumes, in particular for the 

560 species used in this experiment. Our results indicate the need for specific research on how 

561 legumes can be maintained in mixed swards under varying and extreme climatic conditions.  

562 Besides the inoculation of soil with Rhizobia species and the optimization of sward 

563 management through adjusted N fertilizer inputs and defoliation frequencies, research should 

564 focus on breeding of adapted cultivars and selection of different legume species that would 

565 withstand low winter temperatures and/or severe drought. 

566 

 567 Wider implications: Legumes as a key contributor to sustainable intensification of grassland 

568 across largely differing productivity levels 

569 One important result of this study is that, although Ntot in mixture was strongly affected by 

570 site productivity, the relative N yield gain in mixture was not (Fig. 5f). This means that less 

571 productive sites as well as more productive sites can equally profit from grass-legume 

572 mixtures to increase N output. Adaptation of legumes to differing productivity levels can be 

573 explained by the concept of “N2 fixation regulation by demand” (Hartwig, 1998; Soussana & 

574 Tallec, 2010). Following Hartwig (1998), the degree of symbiotic N2 fixation of legumes is 

575 controlled by a series of eco-physiological triggers and N feedback mechanisms from the 

576 individual plant to the ecosystem level, with N2 fixation of legumes being largely regulated by 

577 the N sink strength (N-demand) of the whole system (Hartwig, 1998; Soussana & Tallec, 

578 2010; Lüscher et al., 2011). It has been shown repeatedly that, under low to medium N 

579 fertilizer supply (< 100 kg N ha
-1

 year
-1

), legumes in a balanced mixture with grasses acquire 

580 the large majority of their N nutrition through symbiotic N2 fixation (Nesheim & Oyen, 1994; 

 581 Høgh-Jensen & Schjoerring, 1997; Nyfeler et al., 2011). In contrast, as amounts of N 

582 fertilizer increase, a decline of N acquired from symbiosis in legumes has been demonstrated 
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583 in field experiments (Høgh-Jensen & Schjoerring, 1994; Nyfeler et al., 2011), glasshouse 

584 studies and mathematical models (Soussana et al., 2002; Soussana & Tallec, 2010). Such 

585 propensity to buffer N supply can also be an advantage for protecting water quality as long as 

586 N fertilizer application is not too high, and provided that the grass component in mixture is 

587 sufficiently large (> 30%) so that nitrate absorption can occur before the water leaches out of 

588 the root zone (Eriksen et al., 2004). Indeed, with high application of N fertilizers (> 400 kg N 

589 ha
-1

 year
-1

) or high legume proportion in swards (> 70%), considerable N leaching can been 

590 observed (Loiseau et al., 2001; Ledgard et al., 2009; Nyfeler, 2009). Thus, there are at least 

591 three reasons why N losses from legume-based grassland systems should be lower than from 

592 fertilized grass systems: (i) nitrogen is fixed symbiotically within the legume nodules and thus 

593 is not freely available in the soil in a reactive form, (ii) symbiotic N2 fixation activity is down- 

594 regulated if the sink of N for plant growth is small, and (iii) in balanced grass-legume 

595 mixtures, the grass roots take up N derived from legumes and from mineralization of soil 

596 organic matter. 

597 

598 Sustainable intensification and food security are required for a wide range of agricultural 

599 systems (Godfray et al., 2010) but the focus of action might differ among intensity levels of 

600 agricultural production. In less productive systems, such as those at the arctic sites in our 

601 study, savings in N fertilizer are probably of less importance due to low levels of N fertilizer 

602 use; however, our data show that for a given amount of N fertilizer input, higher N output 

603 (Ntot or forage protein per unit area) can be expected with grass-legume mixtures than with 

604 pure grass alone (more output for the same input). In systems that use high levels of N 

605 fertilizer to achieve high production levels, in contrast, the same N output can be achieved by 

606 mixed swards with less input of N fertilizer (the same output from less input), thereby 
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607 reducing energy use (Kitani et al., 1999), nitrate losses (Jensen et al., 2012), and GHG 

608 emissions (Davidson, 2009; Schils et al., 2013; Schmeer et al., 2014). 

609 

610 Finally, the use of grass-legume mixtures fulfills recent demands for climate change 

 611 mitigation (Smith et al., 2013). The savings in application of N fertilizers that can potentially 

612 be achieved through the benefit of symbiotic N2 fixation in grassland mixtures makes their 

613 use an important strategy for reduction of GHG emissions from agriculture (Smith et al., 

614 2008; Canfield et al., 2010). Therefore, the use of such mixtures should be actively supported 

615 as they also meet major targets of practical grassland management, such as robustness in 

616 gains of total biomass yield despite variation in legume proportions, and applicability across 

617 wide environmental gradients (Suter et al., 2012; Finn et al., 2013). Provided that cultural 

618 barriers can be overcome (e.g. lacking knowledge in establishment of mixtures and their 

619 management to improve legume persistence), grass-legume mixtures are also a mitigation 

620 measure that can be implemented in the near future (Smith & Gregory, 2013; Smith et al., 

621 2013). This is an important feature to meet the urgent needs for reductions in GHG emissions 

622 from the agriculture, forestry and other land use sector, which are estimated to be around 25% 

623 of total anthropogenic GHG output (Bustamante et al., 2014). 

624 

625 In conclusion, this study demonstrates that the N output of forage harvest is maximized in 

626 mixtures over a wide range of production levels. In the face of high economic and 

627 environmental costs of industrial N fertilizers (Kitani et al., 1999; Gruber & Galloway, 2008; 

628 Canfield et al., 2010), the contribution of symbiotic N2 fixation by legumes to grassland N 

629 supply appears to be a key strategy to maintain and increase current levels of production and 

630 protein self-sufficiency in a more sustainable way than achieved so far. 
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837 Table S7 Summary of regressions relating realized legume proportion, total nitrogen yield 

838 (Ntot), and the relative N yield gain in mixture (Ngainmix/Ntot) to site productivity and four 

839 climatic variables 

840 Fig. S1 Fitted lines to total N yield of individual sites as affected by sown legume proportion 

841 
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842 Tables 

843 

844 Table 1 Identity and functional types of species selected for experimentation in different regions of Europe. The species reflected agronomic 

845 importance and the adaptation to pedo-climatic conditions and were selected on the advice of local experts. 

Grass species Legume species 

Species group # Sites G1
‡
 G2

§
 L1

‡
 L2

§
 

Mid European (ME) 12 Lolium perenne L. Dactylis glomerata L. Trifolium pratense L. Trifolium repens L. 

Northern European (NE) 3 Phleum pratense L. Poa pratensis L. Trifolium pratense L. Trifolium repens L. 

Other (O) 1 Lolium perenne L. Phleum pratense L. Trifolium pratense L. Trifolium repens L. 

846 ‡ _ Fast establishing species: fast germination and fast establishment, thereby providing adequate cover of soil in the sowing year and high biomass 

847 yields in the first and second years after sowing. These species often lack persistency. 

848 § Temporally persistent species: slower in germination and growth rate during establishment but highly competitive in the long run, therefore 

849 increasing in cover and biomass yields over initial years and constituting the majority of yield from the third year onwards. 

850 
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Table 2 Summary of analysis of total N yield (Ntot) regressed on legume proportion 

(Legume) in the multisite grassland experiment across Europe. F-tests refer to the fixed 

effects of the linear mixed model. See Material and Methods for detailed information on the 

854 model.     

 Variable Dfnum Dfden F-value P 

 Legume linear (Legume) 1 14.9 19.4 < 0.001 

 
Legume quadratic (Legume

2
) 1 15.0 19.4 < 0.001 

 
Legume cubic (Legume

3
) 1 14.9 12.0 0.003 

 
Year 2 12.8 9.4 0.003 

 
DeltaBiomass

‡
 1 749.4 1664.4 < 0.001 

 
Legume x Year 2 10.4 5.6 0.022 

 
Legume x DeltaBiomass 1 730.0 4.7 0.030 

 DeltaBiomass x Year 2 715.1 7.8 < 0.001 
 

855 ‡ DeltaBiomass is an effect on Ntot that is uncorrelated to the other predictors (see 

856 Appendix A, Supporting Information, for details). Seed density was not significant and 

857 was omitted. For regression estimates and their standard errors see Table S6, Supporting 

858 Information. 

859 Dfnum: degrees of freedom of term; Dfden: degrees of freedom of error (which can be 

860 fractional in restricted maximum likelihood analysis) 
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861 Table 3 Total nitrogen yield (Ntot) in monocultures and grass-legume mixtures and N yield 

862 gain (Ngain) in stands containing legumes across all sites of the continental-scale grassland 

863 experiment. Values are the fixed estimates (±1 standard error) derived from the linear mixed 

864 model corresponding to Table 2 (eqn. S1, Appendix A, Supporting Information, and Table  

865 S6). N yield gain in legume pure stands (Ngainleg) and mixtures (Ngainmix) was calculated as the 

866 difference between Ntot of a stand and Ntot of the pure grass stand. Values of Ntot in mixture 

867 (Ntotmix), Ngainmix, 
and

 Ngainmix/Ntotmix are predicted for a stand with one third proportion of 

868 legumes (L) and two thirds of grasses (G). 

a) Ntot (kg ha
-1
 year

-1
) Minimum legume 

Pure stands Mixture proportion to attain 

Grass Legume
‡
 1/3:2/3 L:G 95% of maximum Ntot 

Year 1 178 (±25.8) 299 (±37.8) 286 (±31.7) 35 

Year 2 173 (±26.2) 211 (±36.4) 253 (±32.6) 24 

Year 3 119 (±16.4) 162 (±23.1) 195 (±24.6) 25 
 

b) Ngain (kg ha
-1

 year
-1

) 

Grass Legume
‡
 1/3:2/3 L:G 

Ngainleg Ngainmix Ngainmix/Ntotmix 

Year 1 - 121 (±29.7) 108 (±22.7) 0.38 (±0.090)
§
 

Year 2 - 38 (±24.6) 80 (±18.7) 0.32 (±0.085) 

Year 3 - 43 (±12.1) 76 (±16.2) 0.39 (±0.097) 
 

869 ‡ Values for pure legume stands (sown as pure legume seeds) are at maximal realized legume  

870 proportion across sites, which were 100%, 97%, and 80% in years 1, 2, and 3, respectively  

871 (compare Fig. 4). 

872 § Approximate standard error of ratio following Lee & Forthofer (2006), p. 37. 
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873 Figure legends  

874 

875 Fig. 1. Sites of the coordinated field experiment to analyze total N yield in grass-legume 

876 mixtures. Site numbers refer to Kirwan et al. (2014) and are as follows: 1: Belgium, 

877 10: Germany_a, 11: Germany_b, 13: Iceland_a, 14: Iceland_b, 15: Ireland, 18: Lithuania_a, 

878 20: Lithuania_c, 22: Norway_a, 23: Norway_b, 24: Norway_c, 26: Poland_a, 27: Poland_b, 

879 34: Switzerland, 35: Wales_a, 36: Wales_b (see Table S1, Supporting Information, for further 

880 information on sites). Symbols refer to the set of plant species sown (see Table 1). 

881 

882 Fig. 2. Illustrative example of potential fractions of total nitrogen (N) yield in grass-legume 

883 mixtures and the respective monocultures. In grass monocultures (legume proportion = 0), the 

884 total N yield accumulated by the sward derives solely from the soil and from fertilizer N 

885 (quantity A). In legume monocultures (legume proportion = 1), the total N yield is greater (A 

886 + B), as legumes also have access to atmospheric N through symbiotic N2 fixation. Mixing 

887 grasses with legumes should lead at first to a linear increase of accumulated N by the stand 

888 with increasing legume proportion (continuous white line) through a constant amount of N 

889 added to the system per unit of legumes. In addition, positive grass-legume interactions (e.g. 

890 stimulation of symbiotic N2 fixation, N transfer) can result in a nonlinear surplus of N yield in 

891 mixtures (quantity C). The area of B+C defines the N yield gain (Ngainmix, see text) for varying 

892 legume proportions in mixtures as compared to grass monocultures. 

893 

894 Fig. 3. Total nitrogen yield (Ntot) of monocultures (Grass, Legume) and mixtures at three 

895 years for sixteen sites across Europe. Ntot is averaged across seed density and additionally 

896 across monocultures of the two grass and legume species, respectively. Sites are arranged in 

897 order of decreasing means of monoculture Ntot averaged over the first two experimental years, 

898 with horizontal bars denoting the annual mean Ntot of mixtures. Inference on differences 
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899 between mixtures and grass monocultures is indicated on top of each panel (Wilcoxon rank 

900 sum test on the unpooled data). Missing symbols in b) for site 15 and in c) for sites 15 and 20 

901 reflect the absence of legumes. Site numbers follow the codes used in Fig. 1, and missing site- 

902 years indicate no analysis of N concentration. 

903 *** P ≤ 0.001, ** P ≤ 0.01, * P ≤ 0.05, ns = not significant 

904 

905 Fig. 4 Total nitrogen yield (Ntot) as affected by legume proportion in swards at three years of 

906 the multisite grassland experiment. The bold black line displays the predicted Ntot across all 

907 sites (fixed mean from linear mixed regression corresponding to Table 2), and coloured lines 

908 display predicted Ntot for individual sites (the variation around the fixed mean) over the range 

909 of legume proportion realized in the respective year. Numbers on lines refer to sites and are 

910 located at the mean legume proportion realized across all stands per site. The shaded area 

911 indicates N yield gain in mixture as compared to grass monoculture across sites (compare Fig. 

912 2). The horizontal bold line at the bottom of the graph indicates the range of legume 

913 proportion for which Ntot across all sites was significantly smaller (P ≤ 0.05) than at 

914 maximum (); consequently, the dotted line displays the non-significant range. No line could 

915 be drawn for site 15 in year two and for sites 15 and 20 in year three because legumes were 

916 absent. Other missing site-years indicate no analysis of N concentration. 

917 

918 Fig. 5. Correlation between legume proportion in the sward and the climatic variables 

919 minimum site temperature (a) and annual precipitation (b), and correlation between the 

920 relative N yield gain in mixture (Ngainmix/Ntotmix) and the same climatic variables (c, d), 

921 realized legume proportion (e), and site productivity (f). Data are site means across the first 

922 two experimental years, with Ngainmix
 and

 Ntotmix being estimated for a mixture with one third 

923 proportion of legumes and two thirds of grasses (following eqn. S2, Appendix A, Supporting 

924 Information). Pearson’s R, its significance, and the trend line following least square 
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925 regression refer to filled symbols (see Table S7, Supporting Information, for regressions on 

926 all climatic variables). Site 15 (Ireland, open symbol) was omitted from these analyses 

927 because legumes were absent from the second year onward. For site names to labels see Fig. 

928 1. 
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