3,349 research outputs found
Neurofilaments: Properties, Functions, and Regulation - Springer
Neuronal intermediate filaments are the most prominent cytoskeleton component of adult neurons in both central and peripheral nervous system. They include neurofilament triplet proteins, peripherin, α-internexin, nestin, and synemin. Although it was initially thought that neuronal intermediate filaments serve a primarily structural function, it has since been demonstrated that they constitute a dynamic network involved in neuronal differentiation, axon outgrowth, and regeneration. Finally, they emerged as a primary cause of some neurodegenerative diseases. Here, we focus on the properties, function, and regulation of neuronal intermediate filaments as well as their relationship to different neurodegenerative diseases
Integration of the Forward Detectors inside the LHC Machine
Several forward detectors have been installed in the LHC long straight sections located on each side of the experimental caverns. Most of these detectors have been designed by the LHC experiments to study the forward physics while some of them are dedicated to the measurement of the LHC luminosity. The integration and the installation of the forward detectors have required an excellent coordination between the experiments and the different CERN groups involved into the design and the installation of the LHC accelerator. In some cases the integration of these detectors has required a modification of the standard beam lines in order to maximise their physics potential. Finally, additional systems have been installed in the LHC tunnel to ensure the operation of the forward detectors in a high radiation environment
Cosmic-ray propagation properties for an origin in SNRs
We have studied the impact of cosmic-ray acceleration in SNR on the spectra
of cosmic-ray nuclei in the Galaxy using a series expansion of the propagation
equation, which allows us to use analytical solutions for part of the problem
and an efficient numerical treatment of the remaining equations and thus
accurately describes the cosmic-ray propagation on small scales around their
sources in three spatial dimensions and time. We found strong variations of the
cosmic-ray nuclei flux by typically 20% with occasional spikes of much higher
amplitude, but only minor changes in the spectral distribution. The locally
measured spectra of primary cosmic rays fit well into the obtained range of
possible spectra. We further showed that the spectra of the secondary element
Boron show almost no variations, so that the above findings also imply
significant fluctuations of the Boron-to-Carbon ratio. Therefore the commonly
used method of determining CR propagation parameters by fitting
secondary-to-primary ratios appears flawed on account of the variations that
these ratios would show throughout the Galaxy.Comment: Accepted for publication in Ap
Efficacy of targeting bone-specific GIP receptor in ovariectomy-induced bone loss
Glucose-dependent insulinotropic polypeptide (GIP) has been recognized in the last decade as an important contributor of bone remodeling and is necessary for optimal bone quality. However, GIP receptors are expressed in several tissues in the body and little is known about the direct versus indirect effects of GIP on bone remodeling and quality. The aims of the present study were to validate two new GIP analogues, called [D-Ala2]-GIP-Tag and [D-Ala2]-GIP1-30, that specifically target either bone or whole body GIP receptors, respectively; and to ascertain the beneficial effects of GIP therapy on bone in a mouse model of ovariectomy-induced bone loss. Both GIP analogues exhibited similar binding capacities at the GIP receptor and intracellular responses as full-length GIP1-42. Furthermore, only [D-Ala2]-GIP-Tag, but not [D-Ala2]-GIP1-30, was undoubtedly found exclusively in the bone matrix and released at acidic pH. In ovariectomized animals, [D-Ala2]-GIP1-30 but not [D-Ala2]-GIP-Tag ameliorated bone stiffness at the same magnitude than alendronate treatment. Only [D-Ala2]-GIP1-30 treatment led to significant ameliorations in cortical microarchitecture. Although alendronate treatment increased the hardness of the bone matrix and the type B carbonate substitution in the hydroxyapatite crystals, none of the GIP analogues modified bone matrix composition. Interestingly, in ovariectomy-induced bone loss, [D-Ala²]-GIP-Tag failed to alter bone strength, microarchitecture and bone matrix composition. Overall, this study shows that the use of a GIP analogue that target whole body GIP receptors might be useful to improve bone strength in ovariectomized animals
On the local birth place of Geminga
Using estimates of the distance and proper motion of Geminga and the
constraints on its radial velocity posed by the shape of its bow shock, we
investigate its birth place by tracing its space motion backwards in time. Our
results exclude the lambda Ori association as the origin site because of the
large distance between both objects at any time. Our simulations place the
birth region at approximately 90-240 pc from the Sun, between 197 degrees and
199 degrees in Galactic longitude and -16 degrees and -8 degrees in latitude,
most probably inside the Cas-Tau OB association or the Ori OB1a association. We
discard the possibility of the progenitor being a massive field star. The
association of Geminga with either stellar association implies an upper limit
of M = 15 Msun for the mass of its progenitor. We also propose new members for
the Cas-Tau and Ori OB1 associations.Comment: 6 pages, 5 figures. Accepted for publication in Astronomy &
Astrophysic
The Path Integral Monte Carlo Calculation of Electronic Forces
We describe a method to evaluate electronic forces by Path Integral Monte
Carlo (PIMC). Electronic correlations, as well as thermal effects, are included
naturally in this method. For fermions, a restricted approach is used to avoid
the ``sign'' problem. The PIMC force estimator is local and has a finite
variance. We applied this method to determine the bond length of H and the
chemical reaction barrier of H+HH+H. At low
temperature, good agreement is obtained with ground state calculations. We
studied the proton-proton interaction in an electron gas as a simple model for
hydrogen impurities in metals. We calculated the force between the two protons
at two electronic densities corresponding to Na () and Al
() using a supercell with 38 electrons. The result is compared to
previous calculations. We also studied the effect of temperature on the
proton-proton interaction. At very high temperature, our result agrees with the
Debye screening of electrons. As temperature decreases, the Debye theory fails
both because of the strong degeneracy of electrons and most importantly, the
formation of electronic bound states around the protons.Comment: 18 pages, 10 figure
Minimal work principle: proof and counterexamples
The minimal work principle states that work done on a thermally isolated
equilibrium system is minimal for adiabatically slow (reversible) realization
of a given process. This principle, one of the formulations of the second law,
is studied here for finite (possibly large) quantum systems interacting with
macroscopic sources of work. It is shown to be valid as long as the adiabatic
energy levels do not cross. If level crossing does occur, counter examples are
discussed, showing that the minimal work principle can be violated and that
optimal processes are neither adiabatically slow nor reversible. The results
are corroborated by an exactly solvable model.Comment: 13 pages, revtex, 2 eps figure
- …
