3,349 research outputs found

    Crosstalks Between Myelinating Cells and the Axonal Cytoskeleton

    Get PDF

    Neurofilaments: Properties, Functions, and Regulation - Springer

    Get PDF
    Neuronal intermediate filaments are the most prominent cytoskeleton component of adult neurons in both central and peripheral nervous system. They include neurofilament triplet proteins, peripherin, α-internexin, nestin, and synemin. Although it was initially thought that neuronal intermediate filaments serve a primarily structural function, it has since been demonstrated that they constitute a dynamic network involved in neuronal differentiation, axon outgrowth, and regeneration. Finally, they emerged as a primary cause of some neurodegenerative diseases. Here, we focus on the properties, function, and regulation of neuronal intermediate filaments as well as their relationship to different neurodegenerative diseases

    Integration of the Forward Detectors inside the LHC Machine

    Get PDF
    Several forward detectors have been installed in the LHC long straight sections located on each side of the experimental caverns. Most of these detectors have been designed by the LHC experiments to study the forward physics while some of them are dedicated to the measurement of the LHC luminosity. The integration and the installation of the forward detectors have required an excellent coordination between the experiments and the different CERN groups involved into the design and the installation of the LHC accelerator. In some cases the integration of these detectors has required a modification of the standard beam lines in order to maximise their physics potential. Finally, additional systems have been installed in the LHC tunnel to ensure the operation of the forward detectors in a high radiation environment

    Cosmic-ray propagation properties for an origin in SNRs

    Full text link
    We have studied the impact of cosmic-ray acceleration in SNR on the spectra of cosmic-ray nuclei in the Galaxy using a series expansion of the propagation equation, which allows us to use analytical solutions for part of the problem and an efficient numerical treatment of the remaining equations and thus accurately describes the cosmic-ray propagation on small scales around their sources in three spatial dimensions and time. We found strong variations of the cosmic-ray nuclei flux by typically 20% with occasional spikes of much higher amplitude, but only minor changes in the spectral distribution. The locally measured spectra of primary cosmic rays fit well into the obtained range of possible spectra. We further showed that the spectra of the secondary element Boron show almost no variations, so that the above findings also imply significant fluctuations of the Boron-to-Carbon ratio. Therefore the commonly used method of determining CR propagation parameters by fitting secondary-to-primary ratios appears flawed on account of the variations that these ratios would show throughout the Galaxy.Comment: Accepted for publication in Ap

    Efficacy of targeting bone-specific GIP receptor in ovariectomy-induced bone loss

    Get PDF
    Glucose-dependent insulinotropic polypeptide (GIP) has been recognized in the last decade as an important contributor of bone remodeling and is necessary for optimal bone quality. However, GIP receptors are expressed in several tissues in the body and little is known about the direct versus indirect effects of GIP on bone remodeling and quality. The aims of the present study were to validate two new GIP analogues, called [D-Ala2]-GIP-Tag and [D-Ala2]-GIP1-30, that specifically target either bone or whole body GIP receptors, respectively; and to ascertain the beneficial effects of GIP therapy on bone in a mouse model of ovariectomy-induced bone loss. Both GIP analogues exhibited similar binding capacities at the GIP receptor and intracellular responses as full-length GIP1-42. Furthermore, only [D-Ala2]-GIP-Tag, but not [D-Ala2]-GIP1-30, was undoubtedly found exclusively in the bone matrix and released at acidic pH. In ovariectomized animals, [D-Ala2]-GIP1-30 but not [D-Ala2]-GIP-Tag ameliorated bone stiffness at the same magnitude than alendronate treatment. Only [D-Ala2]-GIP1-30 treatment led to significant ameliorations in cortical microarchitecture. Although alendronate treatment increased the hardness of the bone matrix and the type B carbonate substitution in the hydroxyapatite crystals, none of the GIP analogues modified bone matrix composition. Interestingly, in ovariectomy-induced bone loss, [D-Ala²]-GIP-Tag failed to alter bone strength, microarchitecture and bone matrix composition. Overall, this study shows that the use of a GIP analogue that target whole body GIP receptors might be useful to improve bone strength in ovariectomized animals

    On the local birth place of Geminga

    Full text link
    Using estimates of the distance and proper motion of Geminga and the constraints on its radial velocity posed by the shape of its bow shock, we investigate its birth place by tracing its space motion backwards in time. Our results exclude the lambda Ori association as the origin site because of the large distance between both objects at any time. Our simulations place the birth region at approximately 90-240 pc from the Sun, between 197 degrees and 199 degrees in Galactic longitude and -16 degrees and -8 degrees in latitude, most probably inside the Cas-Tau OB association or the Ori OB1a association. We discard the possibility of the progenitor being a massive field star. The association of Geminga with either stellar association implies an upper limit of M = 15 Msun for the mass of its progenitor. We also propose new members for the Cas-Tau and Ori OB1 associations.Comment: 6 pages, 5 figures. Accepted for publication in Astronomy & Astrophysic

    The Path Integral Monte Carlo Calculation of Electronic Forces

    Full text link
    We describe a method to evaluate electronic forces by Path Integral Monte Carlo (PIMC). Electronic correlations, as well as thermal effects, are included naturally in this method. For fermions, a restricted approach is used to avoid the ``sign'' problem. The PIMC force estimator is local and has a finite variance. We applied this method to determine the bond length of H2_2 and the chemical reaction barrier of H+H2_2\longrightarrow H2_2+H. At low temperature, good agreement is obtained with ground state calculations. We studied the proton-proton interaction in an electron gas as a simple model for hydrogen impurities in metals. We calculated the force between the two protons at two electronic densities corresponding to Na (rs=3.93r_s=3.93) and Al (rs=2.07r_s=2.07) using a supercell with 38 electrons. The result is compared to previous calculations. We also studied the effect of temperature on the proton-proton interaction. At very high temperature, our result agrees with the Debye screening of electrons. As temperature decreases, the Debye theory fails both because of the strong degeneracy of electrons and most importantly, the formation of electronic bound states around the protons.Comment: 18 pages, 10 figure

    Minimal work principle: proof and counterexamples

    Full text link
    The minimal work principle states that work done on a thermally isolated equilibrium system is minimal for adiabatically slow (reversible) realization of a given process. This principle, one of the formulations of the second law, is studied here for finite (possibly large) quantum systems interacting with macroscopic sources of work. It is shown to be valid as long as the adiabatic energy levels do not cross. If level crossing does occur, counter examples are discussed, showing that the minimal work principle can be violated and that optimal processes are neither adiabatically slow nor reversible. The results are corroborated by an exactly solvable model.Comment: 13 pages, revtex, 2 eps figure
    corecore