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ABSTRACT 56 

Glucose-dependent insulinotropic polypeptide (GIP) has been recognized in the last decade 57 

as an important contributor of bone remodeling and is necessary for optimal bone quality. 58 

However, GIP receptors are expressed in several tissues in the body and little is known 59 

about the direct versus indirect effects of GIP on bone remodeling and quality. The aims of 60 

the present study were to validate two new GIP analogues, called [D-Ala2]-GIP-Tag and [D-61 

Ala2]-GIP1-30, that specifically target either bone or whole body GIP receptors, respectively; 62 

and to ascertain the beneficial effects of GIP therapy on bone in a mouse model of 63 

ovariectomy-induced bone loss. Both GIP analogues exhibited similar binding capacities at 64 

the GIP receptor and intracellular responses as full-length GIP1-42. Furthermore, only [D-65 

Ala2]-GIP-Tag, but not [D-Ala2]-GIP1-30, was undoubtedly found exclusively in the bone matrix 66 

and released at acidic pH. In ovariectomized animals, [D-Ala2]-GIP1-30 but not [D-Ala2]-GIP-67 

Tag ameliorated bone stiffness at the same magnitude than alendronate treatment. Only [D-68 

Ala2]-GIP1-30 treatment led to significant ameliorations in cortical microarchitecture. Although 69 

alendronate treatment increased the hardness of the bone matrix and the type B carbonate 70 

substitution in the hydroxyapatite crystals, none of the GIP analogues modified bone matrix 71 

composition. Interestingly, in ovariectomy-induced bone loss, [D-Ala²]-GIP-Tag failed to alter 72 

bone strength, microarchitecture and bone matrix composition.  Overall, this study shows 73 

that the use of a GIP analogue that target whole body GIP receptors might be useful to 74 

improve bone strength in ovariectomized animals.    75 
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1. INTRODUCTION 76 

Some evidences have emerged recently that the gut, and more specifically entero-77 

endocrine cells, may play a role in maintaining optimal bone quality and bone mass (Gaudin-78 

Audrain, et al. 2013; Henriksen, et al. 2003; Mabilleau, et al. 2013; Mieczkowska, et al. 2013; 79 

Mieczkowska, et al. 2015b; Nissen, et al. 2014; Torekov, et al. 2014; Tsukiyama, et al. 2006; 80 

Walsh and Henriksen 2010; Xie, et al. 2005). Among the plethora of peptides secreted by the 81 

gastrointestinal tract, the glucose-dependent insulinotropic polypeptide (GIP), synthesized 82 

and secreted by entero-endocrine K cells, has emerged as a potential candidate. Indeed, 83 

whole body GIP receptor (GIPr)-deficiency led to alterations of trabecular and cortical bone 84 

microarchitectures, tissue mineral density and collagen maturity (Gaudin-Audrain et al. 2013; 85 

Mieczkowska et al. 2013). Furthermore, administration of stable GIP analogues improved 86 

bone matrix composition and biomechanics at the tissue level in healthy and diabetic rodent 87 

models (Mabilleau, et al. 2014; Mansur, et al. 2015; Mansur, et al. 2016).  88 

In rodents, the GIPr is widely expressed in the body and expression has been 89 

documented in the endocrine pancreas, gastro-intestinal tract, adipose tissue, adrenal 90 

cortex, pituitary gland, vascular endothelium and several regions in the central nervous 91 

system (Baggio and Drucker 2007). Expression in bone has also been reported and the GIPr 92 

seems to be expressed in rodent and human osteoblasts, osteocytes and osteoclasts 93 

(Bollag, et al. 2000; Mabilleau, et al. 2016; Mieczkowska, et al. 2015a). However, due to this 94 

wide variety of tissue expression, it is not clear whether the marked bone effects observed in 95 

previous rodent studies arise from inactivation/activation of bone-specific GIPr or 96 

extraskeletal GIPr.  97 

The rapid degradation of GIP in plasma by dipeptidyl peptidase-4 (DPP-4) precludes 98 

to its use as a therapeutic approach. As such, a series of GIP modifications have previously 99 

been conducted and led to several GIP analogues with proven efficacy (Irwin and Flatt 100 

2009). From these manipulations, it appears that the N-terminal extremity of GIP, and 101 

particularly the first two amino acids, was particularly important in allowing receptor 102 

activation. Furthermore, only the first 30 amino acids are required to induce biological activity 103 
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(Hinke, et al. 2001). As such, we produced two new GIP analogues, namely [D-Ala2]-GIP1-30 104 

and [D-Ala2]-GIP-Tag that possess a D-alanine in position 2 to confer DPP-4 resistance. 105 

Furthermore, [D-Ala2]-GIP-Tag possesses a tag of 9 negatively charged amino acids at its C-106 

terminal extremity that, according to previous published studies, should give a bone-specific 107 

affinity (Kasugai, et al. 2000; Yokogawa, et al. 2001). The current gold standard medication 108 

for treating post-menopausal osteoporosis is represented by bisphosphonates and as such, 109 

we thought to also ascertain how the two new molecules above compared with alendronate.  110 

The main goals of this study were to (1) verify that the tag confers a bone-specific 111 

targeting, (2) ascertain the biological efficacy of these two new GIP analogues, [D-Ala2]-GIP1-112 

30 and [D-Ala2]-GIP-Tag and (3) investigate their therapeutic potentials in ovariectomy-113 

induced bone fragility as compared to alendronate.  114 

 115 

2. MATERIAL AND METHODS 116 

2.1. Reagents 117 

All GIP analogues were purchased from GeneCust Europe with a purity >95% (Dudelange, 118 

Luxembourg). Purity has been verified by high performance liquid chromatography and 119 

peptide composition validated by mass spectroscopy. Sequences are provided in table 1. 120 

Macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor kB 121 

ligand (RANKL) were purchased from R&D Systems Europe (Abingdon, UK). Fluo-4AM was 122 

purchased from Invitrogen (Carlsbad, CA, USA). All other chemicals were obtained from 123 

Sigma-Aldrich (Lyon, France) unless otherwise stated.  124 

 125 

2.2. In vitro mineral binding assay  126 

Carboxymethylated poly(2-hydroxyethylmethacrylate) (pHEMA) disks and their mineralization 127 

were performed as previously described (Filmon, et al. 2002). Mineralized disks were 128 

incubated for 16 h with 5 nmoles of 5-carboxyfluorescein (5-FAM), 5-FAM-[D-Ala2]-GIP1-30, 5-129 

FAM-[D-Ala2]-GIP-Tag or calcein green. PHEMA disks were rinsed extensively with distilled 130 

water prior to observation with a Leica TCS SP8 confocal laser scanning microscope (Leica, 131 
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Nanterre, France). Excitation was performed at 488 nm with an argon laser and emission 132 

was recorded in the range 510-550 nm. After observation, the mineral was dissolved with 133 

0.2M HCl overnight and fluorescence readings were performed with a M2 microplate reader 134 

(Molecular devices, St Gregoire, France) set up at 480 nm for excitation and 530 nm for 135 

emission. Calcium concentrations were estimated as published previously (Degeratu, et al. 136 

2013).   137 

 138 

2.3. Cell culture and activity of GIP analogues 139 

MC3T3-E1 cells were purchased from American type culture collection (ATCC, Teddington, 140 

UK). Cells were grown and expanded in propagation medium containing alpha minimum 141 

essential medium (αMEM) supplemented with 5% fetal bovine serum (FBS), 5% bovine calf 142 

serum, 100 U/mL penicillin, and 100 µg/mL streptomycin in a humidified atmosphere 143 

enriched with 5% CO2 at 37°C.   144 

Competitive whole cell binding studies were performed in cold αMEM supplemented with 145 

0.1% bovine serum albumin (BSA), protease inhibitors (Halt protease inhibitor cocktail, 146 

Thermofisher scientific, Villebon sur Yvette, France), 8 x 10-9M FAM-GIP1-42, and appropriate 147 

peptide concentrations. Equilibrium binding was achieved overnight at 4°C. Cells were then 148 

washed twice with cold assay buffer, solubilized in 0.1M NaOH, and transferred to opaque 149 

microplate for fluorescence readings.  150 

Cyclic adenosine monophosphate (cAMP) stimulation experiment was performed in 151 

response to 100 pM GIP analogues in MC3T3-E1 cells with a fluorometric commercially 152 

available kit (reference KGE002B, R&D Systems Europe) (Mieczkowska et al. 2015a). 153 

Assessment of the cell phospho-proteome was assessed with the Proteome profiler anti-154 

phosphokinase assay (reference ARY003b, R&D Systems Europe).  155 

MC3T3-E1 cells were seeded in 96-well plate with clear bottom and opaque edges (ibidi 156 

GmbH, Martinsried, Germany). Cells were incubated with 4 µM Fluo-4-AM for 45 min at 37°C 157 

in the dark and washed with pre-warmed HEPES buffered saline. The plate was placed in a 158 

M2 microplate reader (Molecular devices) and signals were acquired at 37°C with an 159 
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excitation wavelength of 490 nm and an emission wavelength set at 515 nm for 5 min. Cells 160 

were then stimulated with 100 pM GIP analogues for 15 min and signals were again acquired 161 

with the microplate reader. Autofluorescence was measured in unloaded cells, and this value 162 

was subtracted from all measurements.   163 

Collagen maturity assay was performed as described in detail elsewhere (Mieczkowska et al. 164 

2015a).  165 

In order to generate mature human osteoclasts, peripheral mononuclear blood cells were 166 

isolated from buffy coat (Etablissement français du sang, Angers, France) and cultured in the 167 

presence of 25 ng/ml M-CSF and 30 ng/ml soluble human RANKL as described previously 168 

(Mabilleau, et al. 2011).  169 

 170 

2.4 Animals 171 

BALB/c (BALB/cJRj) mice were obtained from Janvier Labs (Saint-Berthevin, France). All 172 

animal experiments were approved by Ethical committee in animal use of the Pays de la 173 

Loire under the animal license CEEA-PdL06-01740.01. Mice were housed 4 animals per 174 

cage in the institutional animal lab (Agreement E49007002) at 24°C +/- 2°C with a 12-hour 175 

light/dark cycle, and were provided with tap water and normal diet (Diet A04, Safe, Augy, 176 

France) ad libitum until sacrifice by cervical dislocation. All procedures were conducted 177 

according to the French Animal Scientific Procedures Act 2013-118.   178 

 179 

2.5. In vivo localization of fluorescently labelled GIP analogues 180 

Intraperitoneal injections of saline or fluorescent GIP analogues (50 nmoles/kg body weight) 181 

were performed at 4 weeks of age in 15 female BALB/c mice (n=5/group). This dose of 182 

fluorescent GIP analogues was chosen to ensure detection in the investigated tissues. 183 

Twenty-four hours after injection, visceral adipose tissue, adrenal gland, bladder, left femur 184 

and tibia, brain, heart, small intestine, kidney, liver, lung, pancreas, skeletal muscle, spleen 185 

and stomach were collected, immediately snap-frozen in liquid nitrogen and stored at -80°C 186 

until use. Then, frozen tissues were powdered, suspended in Tris 0.1M pH 7.4 and 187 
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fluorescence readings with a microplate reader as detailed above were performed. 188 

Fluorescence readings were normalized by the concentration of proteins measured with the 189 

bicinchoninic acid assay (Pierce Biotechnology, Rockford, IL).  Right femurs of 4-week-old 190 

mice were collected at necropsy, fixed in buffered formalin and embedded in 191 

polymethylmethacrylate (pMMA) at low temperature (Chappard 2009). Thick cross-sections 192 

at the mid-diaphysis of all femurs were cut with a low speed precision saw (Minitom, Struers, 193 

Champigny sur Marne, France). Femur sections were grinded up to a thickness of 50 µm and 194 

subsequently imaged with the confocal microscope as explained above.  195 

Additionally, right tibias of 5-FAM-[D-Ala2]-GIP-Tag-injected mice were collected at necropsy, 196 

fixed in buffered formalin and embedded in polymethylmethacrylate (pMMA) at low 197 

temperature.  Thick cross-sections (500 µm-thick) at the mid-diaphysis were cut with a low 198 

speed precision saw and incubated in saline or 0.1M acetic acid (pH 4.5) for 24 h. The 199 

resulting solution was buffered with 1M Tris and fluorescence readings were performed with 200 

the M2 microplate reader as explained above.  201 

 202 

2.6. Long term effects of GIP analogues in ovariectomy-induced bone loss 203 

Bilateral ovariectomy (OVX) was performed in 32 BALB/c mice at 12 weeks of age under 204 

general anesthesia supplemented with a β2 adrenergic receptor agonist. At 16 weeks of age, 205 

mice were randomly allocated into four groups: vehicle daily (OVX+Veh, n=8), 25 206 

nmoles/kg/day intraperitoneally (ip) [D-Ala2]-GIP1-30 (OVX+GIP1-30, n=8), 25 nmoles/kg/day ip 207 

[D-Ala2]-GIP-Tag (OVX+GIP-Tag, n=8) and 10 µg/kg alendronate twice a week ip (OVX+Aln, 208 

n=8). These doses and regimens of GIP analogues and alendronate were based on previous 209 

published studies where these molecules were proven active with beneficial effects on bone 210 

or equivalent to approved clinical dose (Mabilleau et al. 2014; Shao, et al. 2017). Eight sham-211 

operated female BALB/c mice with the same age and injected daily with saline were used as 212 

controls (Sham+Veh). All mice from the second study were also administered with calcein 213 

(10 mg/kg; ip) 10 and 2 days before being culled at 24 weeks of age. At necropsy, blood was 214 

collected by intracardiac aspiration (~250µl). Non-fasting glucose level were evaluated with 215 
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an Accu-Chek® mobile glucometer (Roche Diabetes Care GmbH, Mannheim, Germany). 216 

Then blood were spun at 13,000 rpm for 15 min at 4°C and serum was aliquoted, snap-217 

frozen in liquid nitrogen and stored at -80°C until use. After necropsy, tibias, femurs and 218 

uterus were collected and cleaned of soft tissues. Femur length was measured with a digital 219 

caliper (Mitutoyo, Roissy en France, France).  220 

 221 

2.7. ELISA 222 

Serum levels of C-terminal telopeptide of collagen type I (CTx-I) and N-terminal propeptide of 223 

type I collagen (P1NP) were measured with the RatLaps and Rat/mouse P1NP ELISA kits, 224 

respectively (Immunodiagnostic Systems Ltd, Boldon, UK), according to the manufacturer 225 

recommendations.   226 

 227 

2.8. Microcomputed tomography 228 

X-ray microcomputed tomography (MicroCT) analyses of the abdomen were performed to 229 

measure abdominal fat volume, that represents a good indicator of whole body fat mass 230 

(Judex, et al. 2010). Anesthetized animals were placed in a Skyscan 1076 microtomograph 231 

(Bruker MicroCT, Kontich, Belgium) and the region localized between L1 and the hip was 232 

selected for fat depot evaluation. Acquisitions were performed at 40 kV, 250 µA, 100-ms 233 

integration time. The isotropic pixel size was fixed at 35 µm, the rotation step at 0.6° and 234 

exposure was done with a 0.5-mm aluminum filter. Tibias were scanned with a Skyscan 1172 235 

microtomograph (Bruker MicroCT) operated at 70 kV, 100 µA, 340-ms integration time. The 236 

isotropic pixel size was fixed at 4 µm, the rotation step at 0.25° and exposure was done with 237 

a 0.5-mm aluminium filter. Each 3D reconstruction image dataset was binarized using global 238 

thresholding. Cortical volume of interest extended on 1-mm centered at the midshaft tibia. All 239 

histomorphometrical parameters were determined according to guidelines and nomenclature 240 

proposed by the American Society for Bone and Mineral Research (Bouxsein, et al. 2010).    241 

 242 

2.9. Marrow adipose tissue assessment 243 
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After microCT scans, tibias were embedded undecalcified in pMMA at 4°C. Longitudinal 244 

sections were cut and stained with toluidine blue. The extent of marrow adipose tissue 245 

(Ad.Ar/Ma.Ar) was computerized with a routine in Image J (release 1.51s, National Institutes 246 

of Health, Bethesda, MA). The nomenclature proposed by the American Society for Bone 247 

and Mineral Research was used in this study (Dempster, et al. 2013).  248 

 249 

2.10. Bone strength assessment 250 

At necropsy, femurs were cleaned of soft tissue and immediately frozen in a saline-soaked 251 

gauze at -20°C. Three-point bending experiments were performed on femurs after thawing 252 

bones at 4°C overnight. Measurements were done with an Instron 5942 (Instron, Elancourt, 253 

France) as reported previously (Mieczkowska et al. 2015b). The load-displacement curve 254 

was acquired with the Bluehill 3 software (Instron). Ultimate load, ultimate displacement, 255 

stiffness and total absorbed energy were computerized (Turner and Burr 1993).  256 

After three-point bending experiments, femurs were embedded undecalcified in pMMA at 4°C 257 

and cross-sections were made at the midshaft using a diamond saw (Accutom, Struers, 258 

Champigny sur Marne, France). Blocks were polished to a 1-µm finish with diamond particles 259 

(Struers, France) and subjected to rehydration in saline 24h prior to nanoindentation testing. 260 

Twelve indentations, at distance from canals, osteocyte lacunae and/or microcracks were 261 

randomly positioned in cortical bone with a NHT-TTX system (Anton Paar, Les Ulis, France) 262 

as previously detailed (Aguado, et al. 2017). At maximum load, a holding period of 15 263 

seconds was applied to avoid creeping of the bone material. The following material 264 

properties at the tissue-level: maximum load (Force max), indentation modulus (EIT), 265 

indentation hardness (HIT) and dissipated energy (Wplast), were determined according to 266 

Oliver and Pharr (Oliver and Pharr 1992).  267 

 268 

2.11. Fourier-transform infrared microscopy (FTIRM) 269 

Four micrometers cross-sectional sections of the midshaft femur were sandwiched between 270 

BaF2 optical windows and FTIRM assessment was performed at bone formation site by 271 
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recording infrared spectra only between double calcein labeling.  A Bruker Vertex 70 272 

spectrometer (Bruker optics, Ettlingen, Germany) interfaced with a Bruker Hyperion 3000 273 

infrared microscope were used as previously reported (Pereira, et al. 2017). Each spectrum 274 

was corrected for Mie scattering with the RMieS-EMSC_v5 algorithm (kind gift of Prof Peter 275 

Gardner, University of Manchester, UK) prior to be subjected to pMMA subtraction. Second 276 

derivative spectroscopy was applied to find the position of underlying peaks and curve fitting 277 

was performed with a routine script in Matlab (The Mathworks, Natick, USA) as previously 278 

reported (Mansur et al. 2015). The evaluated infrared spectral parameters were (1) mineral-279 

to-matrix ratio, calculated as the ratio of integrated areas of the υ1, υ3 phosphate band at 280 

900-1200 cm-1 to the amide I band at 1585-1725 cm-1 (Boskey, et al. 2005); (2) mineral 281 

maturity calculated as the area ratio of the subbands at 1020 cm-1 and 1030 cm-1 of the 282 

phosphate band (Gadaleta, et al. 1996); (3) carbonate-to-phosphate ratio, calculated as the 283 

ratio of the υ2 carbonate band at 850-900 cm-1 to the υ1,υ3 phosphate band (Paschalis, et 284 

al. 1996); (4) carbonate substitution type by integrating the area of subbands located at 866 285 

cm-1 (labile), 871 cm-1 (type B) and 878 cm-1 (type A) over the υ2 carbonate band (Rey, et al. 286 

1989); (5) acid phosphate content, calculated as the area ratio of the 1127 cm-1 and 1096 287 

cm-1 subbands (Spevak, et al. 2013) and (6) collagen maturity, determined as the relative 288 

ratio of subbands located at 1660 cm-1 (trivalent cross-links) and 1690 cm-1 (divalent cross-289 

links) of the amide I peak (Paschalis, et al. 2001) .  290 

 291 

2.12. Bone mineral density distribution (BMDD) evaluation 292 

Quantitative backscattered electron imaging (qBEI) experiments were performed on the 293 

same blocks and same regions as nanoindentation. A full description of qBEI preparation, 294 

calibration and analysis has already been extensively described elsewhere (Mabilleau et al. 295 

2013; Mieczkowska et al. 2015b; Roschger, et al. 1998). Cortical bone area was imaged at a 296 

200 X nominal magnification, corresponding to a pixel size of 0.5 µm. Four images per 297 

samples were taken. Two variables were obtained from the bone mineral density distribution: 298 
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Camean as the average calcium concentration and Cawidth as the width of the histogram at half 299 

maximum of the peak. Following this, the blocks were imaged at a 200 X magnification with a 300 

confocal microscope (Leica SP8, Leica, Nanterre, France) equipped with an argon laser at 301 

488 nm and a hybrid GaAs detector (Leica) to find bone surface with double labels. Confocal 302 

images were superimposed on qBEI images in order to delineate new bone matrix formed 303 

during the time-course of the study. Using ImageJ 1.51s, a straight line (4 pixel width) 304 

perpendicular to the mineralization front across the new bone structural unit with a step size 305 

of 0.5µm was drawn on qBEI image. The calcium content was plotted vs. distance of 306 

mineralization front. These plots show a biphasic aspect with fast mineralization process 307 

close to the mineralization front followed by a slow mineralization process. The two 308 

mineralization processes were then analysed by linear curve fitting with a lab-made routine in 309 

Excel 2010 (Microsoft, Issy-les-Moulineaux, France). Caturn was determined as the calcium 310 

concentration where the fast mineralization process was changing to the slow mineralization 311 

process as described by Roschger et al.,(Roschger, et al. 2008) 312 

 313 

2.13. Statistical analysis 314 

All data were analyzed using Prism 6.0 (GraphPad Software Inc., La Jolla, CA). Mineral 315 

binding was analyzed by a one-way analysis of variance (ANOVA) followed by post hoc 316 

Dunnett’s multiple comparisons tests. Tissue distribution of both fluorescent analogues was 317 

analyzed by a two-way ANOVA with Sidak’s multiple comparisons tests. GIPr binding assay 318 

was analyzed by non-linear regression analysis. Intracellular signaling (cAMP, intracellular 319 

calcium and phospho-proteins) as well as in vitro collagen maturity and extent of osteoclast 320 

formation and resorption in vitro were analyzed with the non-parametrical Kruskal-Wallis test.  321 

Due to the adaptive nature of bone, bone strength, bone microarchitecture and bone 322 

compositional parameters have been adjusted for body size (body mass x femur length) 323 

using a linear regression method as reported in details elsewhere (Jepsen, et al. 2015). One-324 

way ANOVA followed by post hoc Dunnett’s multiple comparisons tests were employed to 325 

analyze differences between OVX+Veh and all the other groups of mice in any of the body 326 
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size-adjusted parameters. Differences at p equal to or less than 0.05 were considered 327 

significant.   328 

 329 

3. RESULTS 330 

3.1. [D-Ala2]-GIP-Tag but not [D-Ala2]-GIP1-30 is capable of binding to hydroxyapatite 331 

and targeting bone tissue 332 

Microscopic examinations of calcospherites grown at the surface of carboxymethylated 333 

pHEMA revealed that 5-FAM-[D-Ala2]-GIP-Tag and calcein green, but neither 5-FAM-[D-334 

Ala2]-GIP1-30 nor 5-FAM alone, were significantly bound to hydroxyapatite (Figure 1A). Tissue 335 

distribution of the two fluorescently labeled analogues highlighted differences between the 336 

two molecules. Indeed, 5-FAM-[D-Ala2]-GIP1-30 was mainly observed in adipose tissue, 337 

adrenal gland, bone, brain, intestine, liver and pancreas, whilst 5-FAM-[D-Ala2]-GIP-Tag was 338 

exclusively found in bone (Figure 1B). Microscopic examinations of femur midshaft cross-339 

sections in 5-FAM-[D-Ala2]-GIP-Tag-injected mice revealed the presence of fluorescent 340 

bands, suggesting the incorporation of this analogue in the bone mineral (Figure 1C). On the 341 

other hand, such bone distribution was not observed in 5-FAM-[D-Ala2]-GIP1-30-injected 342 

animals (Figure 1C).  Furthermore, incubation of thick tibia slices in acidic conditions (pH 343 

4.5), but not in neutral solution, was capable of releasing 5-FAM-[D-Ala2]-GIP-Tag (Figure 344 

1D). 345 

 346 

3.2. Cellular and molecular activities of [D-Ala2]-GIP-Tag are not affected by the C-347 

terminal modification 348 

Next, we thought to investigate the biological activity of both GIP analogues. As represented 349 

in Figure 2A, [D-Ala2]-GIP1-30 and [D-Ala2]-GIP-Tag did not show any differences in their 350 

capacity to bind to the GIPr with IC50 of 65.5±2.5 pM and 72.9±2.7 pM, respectively. More 351 

importantly, their binding activity was similar to GIP1-42, with IC 50 of 65.3±1.7 pM. Both GIP 352 

analogues were capable of inducing cAMP production and rise in intracellular calcium to the 353 

same level as observed with GIP1-42 (Figure 2A). Phospho-proteome analysis showed that 354 
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osteoblasts stimulated with GIP1-42 also activated p38α, CREB, AMPKα2 and STAT2 in 355 

addition to cAMP (Figure 2B). [D-Ala2]-GIP1-30 and [D-Ala2]-GIP-Tag showed similar actions 356 

on all these intracellular pathways (Figure 2B).  Finally, we tested whether [D-Ala2]-GIP1-30 357 

and [D-Ala2]-GIP-Tag were capable of improving collagen maturity as observed with GIP1-42 358 

and indeed, this parameter was significantly augmented by 32% and 37%, with [D-Ala2]-GIP1-359 

30 and [D-Ala2]-GIP-Tag, respectively as compared with untreated cells (Figure 2C). As 360 

suspected, both GIP analogues were also capable to reduce osteoclast formation and 361 

osteoclast-mediated bone resorption in vitro in a similar extent to GIP1-42 (Figure 2D).    362 

 363 

3.3. Effects of [D-Ala2]-GIP1-30 vs. [D-Ala2]-GIP-Tag in OVX-induced bone loss 364 

We next examined the biological effects of GIP analogues in the OVX mouse model. As 365 

compared with Sham+Veh animals and shown in Table 2, OVX+Veh mice presented with 366 

higher abdominal fat volume and CTx-I levels and lower uterus mass. Treatment with [D-367 

Ala2]-GIP1-30 significantly reduced CTx-I levels whilst treatment of OVX animals with [D-Ala2]-368 

GIP-Tag significantly reduced abdominal fat volume, marrow adipose tissue and CTx-I 369 

levels. Alendronate administration only significantly reduced CTx-I levels.  370 

After the 8-week experimental treatment period, structural mechanical properties were 371 

assessed by three-point bending (Figures 3 A-F). As expected, OVX+Veh mice presented 372 

with significant reductions in ultimate force (-18%, p=0.0005), yield load (-27%, p<0.0001) 373 

and stiffness (-34%, p<0.0001). Treatments with alendronate or [D-Ala2]-GIP1-30, but not [D-374 

Ala2]-GIP-Tag, significantly augmented by 33% (p<0.0001) and 25% (p=0.0013) stiffness, 375 

respectively.  Bone strength was also investigated at the tissue level by nanoindentation 376 

(Figures 3 G-J). As compared with Sham animals, OVX+Veh mice presented no significant 377 

alterations in any of the studied parameters. The use of alendronate significantly augmented 378 

HIT by 29% (p=0.0191). Neither [D-Ala2]-GIP1-30 nor [D-Ala2]-GIP-Tag significantly modified 379 

strength at the tissue level.  380 

As compared with Sham+Veh animals, significant microarchitectural alterations of cortical 381 

bone were evidenced as expected in OVX+Veh animals and represented by lower total 382 
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cross-sectional area (Tt.Ar, -10%, p=0.0249), marrow area (Ma.Ar, -14%, p=0.0046) and 383 

cortical area (Ct.Ar, -9%, p=0.0248) (Table 3). On the other hand, cortical thickness (Ct.Th), 384 

moment of inertia about the anteroposterior (Iap) or mediolateral (Iml) axis and polar moment 385 

of inertia (J) were not significantly different between the two groups of animals. As compared 386 

with OVX+Veh animals, treatment with [D-Ala2]-GIP1-30 significantly increased Tt.Ar, Ma.Ar, 387 

Ct.Ar and J by 10% (p=0.0417), 16% (p=0.0041), 9% (p=0.0430) and 18% (p=0.0246), 388 

respectively. Treatment with [D-Ala2]-GIP-Tag did not result in significant modifications of 389 

cortical microarchitecture although a trend to similar effects as observed with [D-Ala2]-GIP1-30 390 

was noted (Table 3). Treatment with alendronate resulted only in lower values for Iml (-21%, 391 

p=0.0277).  392 

Alterations of bone matrix composition was also evidenced in OVX+Veh animals as 393 

compared with Sham+Veh (Figure 4). Indeed, at site of bone formation, collagen maturity 394 

and mineral-to-matrix ratio were significantly lowered by 25% (p=0.0261) and 35% 395 

(p=0.0070), respectively in OVX+Veh animals. As compared with OVX+Veh animals, 396 

treatment with [D-Ala2]-GIP1-30 or [D-Ala2]-GIP-Tag significantly lowered the overall mean 397 

calcium distribution in the bone matrix (Camean) by 7% (p=0.0002) and 4% (p=0.0217), 398 

respectively. These two molecules also reduced the Caturn value by 6% (p=0.005) and 7% 399 

(p=0.002), respectively. At site of bone formation, none of these molecules modified the bone 400 

matrix composition. On the other hand, treatment with alendronate significantly reduced 401 

calcium distribution heterogeneity (Cawidth) by 11% (p=0.0044) and augmented Caturn values 402 

by 7% (p<0.001) in the bone matrix. At site of bone formation, alendronate resulted in higher 403 

carbonate-to-phosphate ratio by 16% (p=0.0204), mainly by reduction in loosely bound 404 

carbonate (-47%, p=0.0053) and increase in type B carbonate substitution (31%, p=0.0008).    405 

 406 

4. DISCUSSION 407 

With respect to its important role in maintaining bone strength in animal models of receptor 408 

deletion, GIP has promises as a therapeutic agent in treating bone fragility. In the present 409 

study, we investigated bone-targeting capacities and biological activities as well as 410 
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therapeutical potencies of two new GIP analogues in ovariectomy-induced bone loss. The 411 

bone-targeting capacity of [D-Ala2]-GIP-Tag, as opposed to [D-Ala2]-GIP1-30, was evident and 412 

emphasized the importance of acidic amino acids in promoting bone affinity. Acidic amino 413 

acid tag mimics the observed aspartic acid repetition in the noncollagenous bone protein 414 

osteopontin. In bone, after secretion, osteopontin rapidly binds to hydroxyapatite and 415 

sequence analysis of osteopontin identified the aspartic acid repetition as a putative mineral-416 

binding site (Butler 1989; Oldberg, et al. 1986). Similarly to what is observed with 417 

bisphosphonate, a molecule bound to the bone mineral is thought to be released upon bone 418 

resorption. The first evidence suggesting such properties of the acidic amino acid tag was 419 

reported by Kasugai and coworkers in 2000 (Kasugai et al. 2000). Since their discovery, at 420 

least six distinct molecules have been developed so far with bone-targeting properties using 421 

an acidic amino acid tag (Hsieh, et al. 2014; Miller, et al. 2008; Montano, et al. 2008; 422 

Nishioka, et al. 2006; Takahashi, et al. 2008; Yokogawa et al. 2001).   In 2007, Murphy et al. 423 

reported the higher efficacy of acidic amino acid tags in comparison to the bisphosphonate 424 

structural group (Murphy, et al. 2007). We deliberately chose to fuse this tag at the C-425 

terminal end of [D-Ala2]-GIP1-30 because only the first 30 amino acids are important for GIP 426 

helicoïdal secondary structure and hence its receptor binding and biological properties 427 

(Alana, et al. 2006; Manhart, et al. 2003). However, in this study, we also provided clear 428 

evidences that [D-Ala2]-GIP1-30 and [D-Ala2]-GIP-Tag presented the same receptor binding 429 

affinities as full length GIP1-42 and that the same intracellular signaling pathways were 430 

activated in osteoblasts in response to these GIP analogues. Previously GIP1-42 has been 431 

reported to enhance collagen maturity in osteoblast cultures (Mieczkowska et al. 2015a) and 432 

to reduce cell differentiation and activity in osteoclast cultures (Mabilleau et al. 2016). In the 433 

present study, we provided clear evidences that the two new GIP analogues, [D-Ala2]-GIP1-30 434 

and [D-Ala2]-GIP-Tag, exhibited similar actions in osteoblast and osteoclast cultures.  435 

However, when administered in vivo, these two molecules presented differences. Indeed, [D-436 

Ala2]-GIP1-30 localizes in several tissues that could potentially affect bone physiology whilst as 437 

discussed above, [D-Ala2]-GIP-Tag localizes almost exclusively in bone. In the ovariectomy-438 
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induced bone fragility model, [D-Ala2]-GIP1-30, but not [D-Ala2]GIP-Tag, was proven potent to 439 

improve bone strength, mainly by modifying the cortical microarchitecture. However, caution 440 

should be taken for interpretation of these observations. Firstly, the activity of [D-Ala²]-GIP-441 

Tag has been tested in isolated cell culture, but not in vivo after incorporation into the bone 442 

mineral. Our release assay demonstrated that at acidic pH, close to pH obtained during 443 

osteoclast resorption, the fluorescent peptide could be released from bone.  However, it was 444 

not possible to assess its biological activity. Furthermore, due to the low concentration given 445 

to the animals, it was not possible to assess the presence of [D-Ala²]-GIP-Tag in blood or 446 

urine. As such, we cannot rule out that the observed lack of effects of [D-Ala²]-GIP-Tag could 447 

be due to either low bioavailability or degradation of the peptide after osteoclast resorption. 448 

Another explanation, and in addition to GIPr tissue targeting, could suggest that to be 449 

beneficial for bone health, extraskeletal GIPr have to be targeted rather than bone-specific 450 

GIPr. However, a limitation to this study is that we did not generate tissue-specific 451 

invalidation or extraskeletal tissue specific activation of GIPr to ascertain how the GIP/GIPr 452 

pathway controls bone physiology.  453 

The mechanism of action of [D-Ala2]-GIP1-30 was also compared with alendronate. In the 454 

present study, alendronate, given at a dose comparable to what is used in humans in the 455 

treatment of post-menopausal osteoporosis (i.e. 70 mg/week orally), improved bone strength 456 

by acting mostly on bone matrix composition (HIT, Cawidth, carbonate-to-phosphate ratio) 457 

rather than restoring cortical bone microarchitecture. On the other hand, [D-Ala2]-GIP1-30 458 

acted preferentially on cortical bone microarchitecture and had almost no action on bone 459 

matrix composition, except a small decrease in tissue mineral density. This indicates that the 460 

molecular mechanisms of action of these two pharmacological interventions are probably 461 

different and in the future, administration of both molecules jointly should be envisaged.  462 

In conclusion, we developed two new GIP analogues that target whole-body GIPr or only 463 

bone-specific GIPr. In ovariectomized animals, only [D-Ala2]-GIP1-30 was potent in 464 

ameliorating bone strength by restoring cortical bone microarchitecture rather than acting on 465 

bone matrix composition in opposition to what was observed with alendronate. This study 466 
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brought new evidences that targeting the GIP/GIPr pathway might be valuable in bone 467 

disorders although further studies will be needed before translating these findings to human 468 

post-menopausal osteoporosis. 469 
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FIGURE LEGENDS 1 

Figure 1: Mineral-binding capacity of GIP analogues. (A) 5-FAM-[D-Ala2]-GIP-Tag and 2 

FAM-[D-Ala2]-GIP1-30 were incubated for 24h with disks of pHEMA that had been previously 3 

mineralized. 5-FAM and Calcein were used as negative and positive controls, respectively. 5-4 

FAM-[D-Ala2]-GIP-Tag but not 5-FAM-[D-Ala2]-GIP1-30 was capable of significantly binding to 5 

the mineralized disks. Values are means ± SEM. #: p<0.05 vs. 5-FAM. (B) Tissue distribution 6 

of 5-FAM, 5-FAM-[D-Ala2]-GIP1-30 and 5-FAM-[D-Ala2]-GIP-Tag. Fluorescence, in arbitrary 7 

units (a.u.) was weighted by the protein mass and detected in several tissues harvested from 8 

animals injected with 5-FAM-[D-Ala2]-GIP1-30. On the other hand, fluorescence due to 5-FAM-9 

[D-Ala2]-GIP-Tag was exclusively found in bone. *: p<0.05 vs.5-FAM, #: p<0.05 vs.5-FAM-[D-10 

Ala2]-GIP1-30. Values are means ± SEM. (C) 5-FAM-[D-Ala2]-GIP1-30 and 5-FAM-[D-Ala2]-GIP-11 

Tag were injected into young mice and the extent of GIP analogue binding in bone was 12 

assessed after 16h. A significant fluorescent line was clearly visible in the bone matrix of 13 

animals injected with 5-FAM-[D-Ala2]-GIP-Tag but not in animals injected with 5-FAM-[D-14 

Ala2]-GIP1-30. Arrowheads indicate the fluorescence line. CtB: cortical bone, BM: bone 15 

marrow. (D) [D-Ala²]-GIP-Tag at acidic but not neutral pH was released from the bone slice 16 

as demonstrated by significant higher level of fluorescence. *: p<0.05 vs. pH 7.0. Values are 17 

means ± SEM.        18 

 19 

Figure 2: Biological activity of GIP analogues. (A) Receptor binding properties and 20 

activation of cAMP and intracellular calcium. Receptor binding properties, cAMP and 21 

intracellular calcium responses of [D-Ala2]-GIP1-30 and [D-Ala2]-GIP-Tag were not significantly 22 

different to those of native GIP1-42. Values are means ± SEM. (B) Activation of intracellular 23 

pathways in MC3T3-E1 cells. [D-Ala2]-GIP1-30, [D-Ala2]-GIP-Tag and GIP1-42 significantly 24 

increased the phosphorylation of p38α, CREB, AMPKα2 and STAT2 in a similar manner. *: 25 

p<0.05 vs. vehicle. Values are means ± SEM. (C) [D-Ala2]-GIP1-30, [D-Ala2]-GIP-Tag and 26 
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GIP1-42 significantly increased collagen maturity in vitro and (D) reduced the number of newly 27 

generated osteoclast per well and the extent of osteoclast resorption. Values are means ± 28 

SEM.  *: p<0.05 vs. vehicle and #: p<0.05 vs. M-CSF+RANKL.  29 

 30 

 Figure 3: Effects of GIP analogues on bone strength in ovariectomy-induced bone 31 

loss. (A-F) Bone strength has been assessed at the whole body-level by three point bending 32 

and (G-J) at the tissue level by nanoindentation. Values are means ± SEM. HIT: indentation 33 

hardness, EIT: indentation modulus, Force max: Maximum load to reach 900 nm in depth, 34 

Wplast: Dissipated energy. *: p<0.05 vs. OVX+Veh.  35 

 36 

Figure 4: Effects of GIP analogues on bone matrix composition. (A) Tissue mineral 37 

density distribution has been studied by qBEI at the midshaft tibia and revealed significant 38 

lower values of Camean and Caturn in the presence of [D-Ala2]-GIP1-30 or [D-Ala2]-GIP-Tag and 39 

a significant lower heterogeneity and higher Caturn in the presence of alendronate. Values are 40 

means ± SEM. *: p<0.05 vs. OVX+Veh. (B) Bone matrix composition has been investigated 41 

at site of bone formation and revealed the lack of effects of both GIP analogues. Treatment 42 

with alendronate resulted in higher values for carbonate-to-phosphate ratio and type B 43 

carbonate substitution and a lower value of labile carbonate substitution. Values are means ± 44 

SEM. *: p<0.05 vs. OVX+Veh.  45 

 46 
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9. TABLES 

Table 1. Peptide sequences and characteristics 

GIP analogues Amino acid sequence Purity 

Theoretical 

molecular 

weight (Da) 

Measured 

molecular 

weight (Da) 

GIP1-42 Y[D-Ala]EGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ 96.5% 4983.53 4983.64 

[D-Ala
2
]-GIP1-30 Y[D-Ala]EGTFISDYSIAMDKIHQQDFVNWLLAQK 97.9% 3531.95 3532.02 

5-FAM-[D-Ala
2
]-GIP1-30 5’Fam-Y[D-Ala]EGTFISDYSIAMDKIHQQDFVNWLLAQK 96.9% 3890.25 3890.34 

[D-Ala
2
]GIP-Tag Y[D-Ala]EGTFISDYSIAMDKIHQQDFVNWLLAQKGAADDDDDD 95.8% 4421.68 4421.76 

5-FAM-[D-Ala
2
]GIP-Tag 5’Fam- Y[D-Ala]EGTFISDYSIAMDKIHQQDFVNWLLAQKGAADDDDDD 95.6% 4779.98 4780.08 
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Table 2. Body weight, composition and metabolic properties.  

 Sham+Veh OVX+Veh OVX+GIP1-30 OVX+GIP-Tag OVX+Aln 

Body mass (g) 23.5 ± 0.4 (0.062) 25.6 ± 0.9 26.1 ± 0.5 (0.945) 23.3 ± 0.6 (0.053) 26.6 ± 0.6 (0.645) 
Abdominal fat volume (%) 14.6 ± 0.6 (<0.001) 24.7 ± 2.4 23.1 ± 1.6 (0.695) 10.8 ± 1.0 (<0.001) 25.6 ± 1.8 (0.695) 
Uterus mass (g) 0.14 ± 0.01 (<0.001) 0.04 ± 0.01 0.05 ± 0.01 (0.915) 0.03 ± 0.01 (0.674) 0.05 ± 0.01 (0.915) 
Femur length (mm) 13.9 ± 0.1 (0.967) 14.0 ± 0.1 14.1 ± 0.1 (0.980) 14.0 ± 0.1 (0.999) 14.2 ± 0.1 (0.898) 
Marrow adipose tissue (%) 0.6 ± 0.2 (0.498) 1.0 ± 0.4 0.4 ± 0.1 (0.123) 0.2 ± 0.1 (0.043) 1.2 ± 0.2 (0.960) 
Non fasting glucose (mmol/l) 9.7 ± 0.4 (0.574)) 10.5 ± 0.6 10.6 ± 0.6 (>0.999) 10.7 ± 0.3 (0.627) 10.6 ± 0.3 (>0.999) 
CTx-I (ng/ml) 8.9 ± 0.5 (<0.001) 14.7 ± 1.0 9.2 ± 0.7 (<0.001) 9.4 ± 1.0 (0.02) 10.8 ± 1.0 (<0.001) 
P1NP (ng/ml) 20.4 ± 1.7 (0.062) 26.4 ± 1.3 23.6 ± 1.9 (0.680) 21.3 ± 2.1 (0.120) 22.5 ± 1.3 (0.340) 

Data are presented as mean ± SEM (p value). Data have been analyzed by one-way ANOVA followed by post hoc Dunnett’s multiple 
comparison test using OVX+Veh group as the control group.  Bold values represent significant differences as compared with OVX+Veh. CTx-I: 
C-terminal telopeptide of type I collagen, P1NP: N-terminal propeptide of type I procollagen.  
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Table 3. Cortical bone microarchitectural parameters at the midshaft tibia.  

 Sham+Veh OVX+Veh OVX+GIP1-30 OVX+GIP-Tag OVX+Aln 

Tt.Ar (mm
2
) 1.72 ± 0.04 (0.025) 1.54 ± 0.04 1.70 ± 0.03 (0.042) 1.66 ± 0.03 (0.221) 1.51 ± 0.08 (0.988) 

Ma.Ar (mm
2
) 0.71 ± 0.02 (0.005) 0.61 ± 0.02 0.71 ± 0.01 (0.004) 0.67 ± 0.01 (0.208) 0.63 ± 0.03 (0.873) 

Ct.Ar (mm
2
) 1.00 ± 0.02 (0.038) 0.90 ± 0.01 0.98 ± 0.02 (0.044) 0.96 ± 0.03 (0.378) 0.87 ± 0.05 (0.747) 

Ct.Th (µm) 245 ± 3 (0.411) 236 ± 5 230 ± 5 (0.630) 235 ± 4 (0.997) 225 ± 6 (0.740) 
Iap (mm

4
) 0.23 ± 0.01 (0.814) 0.22 ± 0.02 0.24 ± 0.01 (0.538) 0.22 ± 0.01 (0.990) 0.24 ± 0.03 (0.815) 

Iml (mm
4
) 0.26 ± 0.00 (0.648) 0.24 ± 0.01 0.27 ± 0.01 (0.297) 0.28 ± 0.01 (0.081) 0.19 ± 0.02 (0.028) 

J (mm
4
) 0.49 ± 0.03 (0.347) 0.44 ± 0.02 0.52 ± 0.01 (0.049) 0.48 ± 0.02 (0.648) 0.41 ± 0.04 (0.800) 

Data are presented as mean ± SEM (p value). Data have been body-size adjusted with a linear regression method and analyzed by one-way 

ANOVA followed by post hoc Dunnett’s multiple comparison test using OVX+Veh group as the control group.  Bold values represent significant 

differences as compared with OVX+Veh. Tt.Ar: total cross-sectional area, Ma.Ar: medullary area, Ct.Ar: cortical bone area, Ct.Th: cortical 

thickness, Iap: moment of inertia about the anteroposterior axis, Iml: moment of inertia about the mediolateral axis, J: polar moment of inertia 
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