223 research outputs found
Dairy Wastewaters for Algae Cultivation, Polyhydroxyalkanote Reactor Effluent Versus Anaerobic Digester Effluent
Nutrients in dairy wastewaters can be remediated through assimilation into algal biomass. Anaerobically digested manure creates an effluent (ADE) that is useful for algal cultivation while alternate processing of manure through a polyhydroxyalkanoate reactor generates a distinct effluent (PHAE), not previously characterized for algal cultivation. Each effluent was evaluated for growth rate, biomass production, and nutrient recovery using type algae species Chlorella vulgaris. Growth rates were elevated in 5, 10, and 20 % dilutions of PHAE (0.59, 0.53, 0.42 days−1) compared to equal concentrations of ADE (0.40, 0.36, 0.37 days−1). In addition, the growth phase lasted up to twice as long for PHAE, resulting in a fourfold higher stationary phase algal concentration (cells∙mL−1) compared to ADE. Growth in ADE was limited by specific inhibitory properties: high concentrations of dissolved organic matter, ammonia, and elevated bacterial load. Maximum nutrient removal rates for ADE and PHAE were 0.95 and 3.46 mg·L−1·day−1 for nitrogen and 0.67 and 0.04 mg·L−1·day−1 for phosphorus, respectively. Finally, biomass derived from PHAE was higher in lipids (11.3 % versus 7.2 %) and thus has a greater potential as a feedstock for biofuel compared to ADE
Proteins of Leishmania (Viannia) shawi confer protection associated with Th1 immune response and memory generation
<p>Abstract</p> <p>Background</p> <p><it>Leishmania (Viannia) shawi </it>parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from <it>L. (V.) shawi </it>promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained.</p> <p>Methods</p> <p>F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated.</p> <p>Results</p> <p>The F1 fraction induced a high degree of protection associated with an increase in IFN-γ, a decrease in IL-4, increased cell proliferation and activation of CD8<sup>+</sup>T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4<sup>+ </sup>central memory T lymphocytes and activation of both CD4<sup>+ </sup>and CD8<sup>+ </sup>T cells. In addition, F1-immunized groups showed an increase in IgG2a levels.</p> <p>Conclusions</p> <p>The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.</p
Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata
The development of novel drugs for the treatment of leishmaniases continues to be crucial to overcome the severe impacts of these diseases on human and animal health. Several bioactivities have been described in extracts from macroalgae belonging to the Cystoseira genus. However, none of the studies has reported the chemical compounds responsible for the antileishmanial activity observed upon incubation of the parasite with the aforementioned extracts. Thus, this work aimed to isolate and characterize the molecules present in a hexane extract of Cystoseira baccata that was found to be bioactive against Leishmania infantum in a previous screening effort. A bioactivity-guided fractionation of the C. baccata extract was carried out and the inhibitory potential of the isolated compounds was evaluated via the MIT assay against promastigotes and murine macrophages as well as direct counting against intracellular amastigotes. Moreover, the promastigote ultrastructure, DNA fragmentation and changes in the mitochondrial potential were assessed to unravel their mechanism of action. In this process, two antileishmanial meroditerpenoids, (3R)- and (3S)-tetraprenyltoluquinol (1a/1b) and (3R)- and (3S)-tetraprenyltoluquinone (2a/2b), were isolated. Compounds 1 and 2 inhibited the growth of the L. infantum promastigotes (IC50 = 44.9 +/- 4.3 and 94.4 +/- 10.1 mu M, respectively), inducing cytoplasmic vacuolization and the presence of coiled multilamellar structures in mitochondria as well as an intense disruption of the mitochondrial membrane potential. Compound 1 decreased the intracellular infection index (IC50 = 25.0 +/- 4.1 mu M), while compound 2 eliminated 50% of the intracellular amastigotes at a concentration > 88.0 mu M. This work identified compound 2 as a novel metabolite and compound 1 as a biochemical isolated from Cystoseira algae displaying antileishmanial activity. Compound 1 can thus be an interesting scaffold for the development of novel chemotherapeutic molecules for canine and human visceral leishmaniases studies. This work reinforces the evidence of the marine environment as source of novel molecules. (C) 2017 Elsevier Inc. All rights reserved.Portuguese FCT CCMAR/Multi/04326/2013FAPESP [2013/16297-2, 2015/11936-2]CNPq [470853/2012-3]FCT doctoral grants [ SFRH/BD/105541/2014 ]FCT Investigator Programme [IF/00049/2012]info:eu-repo/semantics/publishedVersio
Global and regional brain metabolic scaling and its functional consequences
Background: Information processing in the brain requires large amounts of
metabolic energy, the spatial distribution of which is highly heterogeneous
reflecting complex activity patterns in the mammalian brain.
Results: Here, it is found based on empirical data that, despite this
heterogeneity, the volume-specific cerebral glucose metabolic rate of many
different brain structures scales with brain volume with almost the same
exponent around -0.15. The exception is white matter, the metabolism of which
seems to scale with a standard specific exponent -1/4. The scaling exponents
for the total oxygen and glucose consumptions in the brain in relation to its
volume are identical and equal to , which is significantly larger
than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on
body mass.
Conclusions: These findings show explicitly that in mammals (i)
volume-specific scaling exponents of the cerebral energy expenditure in
different brain parts are approximately constant (except brain stem
structures), and (ii) the total cerebral metabolic exponent against brain
volume is greater than the much-cited Kleiber's 3/4 exponent. The
neurophysiological factors that might account for the regional uniformity of
the exponents and for the excessive scaling of the total brain metabolism are
discussed, along with the relationship between brain metabolic scaling and
computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen
Contract Linkages and Resource Use in Grain Production: The Argentine Pradera Pampeana
This paper analyzes contractual arrangements in barley production in the Argentine pradera pampeana region. Barley constitutes an interesting case-study: its production and marketing conditions result in some degree of vertical contracting between primary producers and processors. Vertical coordination via contracting, however, is considerably less than that observed for example in poultry or some types of vegetable and fruit production. Barley is thus an intermediate case between coordination via impersonal market transactions and that resulting from different degrees of vertical integration. The objective of the paper is to determine the impacts of contracting on decisions such as input purchasing agreements, output marketing sharing, vertical integration, risk management and the use of technical know-how. The impact of contracting arrangements on input use and technology choice is also explored. Findings include the following. First, input purchase sharing, or output marketing sharing arrangements are infrequent amongst farmers. Some evidence exists, however, of barley farmers engaging in these arrangements more than farmers producing alternative crops. The (partial) asset-specific nature of the barley crop may explain these differences. Second, a higher proportion of barley farmers engage in different types of vertical arrangements with input suppliers or output purchasers. Third, farmers participating in the barley vertical chain are more likely to use formal insurance instruments than farmers producing other crops. Fourth, significant differences exist in input (fertilizer and ag chemical), and technical-know how between farmers that participate and those that do not participate in vertical arrangements with input suppliers and output purchasers. Formal contracting appears, in general, to have a positive impact on all these dimensions. The paper shows that contracts between barley producers and processors are relatively simple, relying for compliance on reputation and good-will more than on the formal written word. Possibly, relatively low benefits from non-compliance result in this type of arrangement working well. The paper also shows, however, that private arbitration, mediation and quality inspection institutions exist in order to reduce both the probability and costs of litigation. The Camara Arbitral (in existence since 1905) is an interesting example of this type of institution
Ultradeformable lipid vesicles localize amphotericin B in the dermis for the treatment of infectious skin diseases
Cutaneous fungal and parasitic diseases remain challenging to treat, as available therapies are unable to permeate the skin barrier. Thus, treatment options rely on systemic therapy, which fail to produce high local drug concentrations but can lead to significant systemic toxicity. Amphotericin B (AmB) is highly efficacious in the treatment of both fungal and parasitic diseases such as cutaneous leishmaniasis but is reserved for parenteral administration in patients with severe pathophysiology. Here, we have designed and optimized AmB-transfersomes [93.5% encapsulation efficiency, 150 nm size, and good colloidal stability (-35.02 mV)] that can remain physicochemically stable (>90% drug content) at room temperature and 4 °C over 6 months when lyophilized and stored under desiccated conditions. AmB-transfersomes possessed good permeability across mouse skin (4.91 ± 0.41 μg/cm2/h) and 10-fold higher permeability across synthetic Strat-M membranes. In vivo studies after a single topical application in mice showed permeability and accumulation within the dermis (>25 μg AmB/g skin 6 h postadministration), indicating the delivery of therapeutic amounts of AmB for mycoses and cutaneous leishmaniasis, while a single daily administration in Leishmania (Leishmania) amazonensis infected mice over 10 days, resulted in excellent efficacy (98% reduction in Leishmania parasites). Combining the application of AmB-transfersomes with metallic microneedles in vivo increased the levels in the SC and dermis but was unlikely to elicit transdermal levels. In conclusion, AmB-transfersomes are promising and stable topical nanomedicines that can be readily translated for parasitic and fungal infectious diseases
Tolerance to coxibs in patients with intolerance to non-steroidal anti-inflammatory drugs (NSAIDs): a systematic structured review of the literature
Adverse events triggered by non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common drug-related intolerance reactions in medicine; they are possibly related to inhibition of cyclooxygenase-1. Coxibs, preferentially inhibiting cyclooxygenase-2, may therefore represent safe alternatives in patients with NSAID intolerance. We reviewed the literature in a systematic and structured manner to identify and evaluate studies on the tolerance of coxibs in patients with NSAID intolerance. We searched MEDLINE (1966–2006), the COCHRANE LIBRARY (4th Issue 2006) and EMBASE (1966–2006) up to December 9, 2006, and analysed all publications included using a predefined evaluation sheet. Symptoms and severity of adverse events to coxibs were analysed based on all articles comprising such information. Subsequently, the probability for adverse events triggered by coxibs was determined on analyses of double-blind prospective trials only. Among 3,304 patients with NSAID intolerance, 119 adverse events occurred under coxib medication. All adverse events, except two, have been allergic/urticarial in nature; none was lethal, but two were graded as life-threatening (grade 4). The two non-allergic adverse events were described as a grade 1 upper respiratory tract haemorrhage, and a grade 1 gastrointestinal symptom, respectively. In 13 double-blind prospective studies comprising a total of 591 patients with NSAID intolerance, only 13 adverse reactions to coxib provocations were observed. The triggering coxibs were rofecoxib (2/286), celecoxib (6/208), etoricoxib (4/56), and valdecoxib (1/41). This review documents the good tolerability of coxibs in patients with NSAID intolerance, for whom access to this class of drugs for short-term treatment of pain and inflammation is advantageous
- …