2,613 research outputs found
Probing of local ferroelectricity in BiFeO3 thin films and (BiFeO3)m(SrTiO3)m superlattices
Ferroelectric BiFeO3 thin films and artificial superlattices of
(BiFeO3)m(SrTiO3)m (m~ 1 to 10 unit cells) were fabricated on (001)-oriented
SrTiO3 substrates by pulsed laser ablation. The variation of leakage current
and macroscopic polarization with periodicity was studied. Piezo force
microscopy studies revealed the presence of large ferroelectric domains in the
case of BiFeO3 thin films while a size reduction in ferroelectric domains was
observed in the case of superlattice structures. The results show that the
modification of ferroelectric domains through superlattice, could provide an
additional control on engineering the domain wall mediated functional
properties.Comment: 14 pages, To be published in J. Mag. Mag Mater. proceedings of EMRS
200
Carbon radio recombination lines from gigahertz to megahertz frequencies towards Orion A
Context. The combined use of carbon radio recombination lines (CRRLs) and the
158 m-[CII] line is a powerful tool for the study of the energetics and
physical conditions (e.g., temperature and density) of photodissociation
regions (PDRs). However, there are few observational studies that exploit this
synergy. Aims. Here we explore the relation between CRRLs and the 158
m-[CII] line in light of new observations and models. Methods. We present
new and existing observations of CRRLs in the frequency range 0.15--230 GHz
with ALMA, VLA, the GBT, Effelsberg 100m, and LOFAR towards Orion~A (M42). We
complement these observations with SOFIA observations of the 158 m-[CII]
line. We studied two PDRs: the foreground atomic gas, known as the Veil, and
the dense PDR between the HII region and the background molecular cloud.
Results. In the Veil we are able to determine the gas temperature and electron
density, which we use to measure the ionization parameter and the photoelectric
heating efficiency. In the dense PDR, we are able to identify a layered PDR
structure at the surface of the molecular cloud to the south of the Trapezium
cluster. There we find that the radio lines trace the colder portion of the
ionized carbon layer, the C/C/CO interface. By modeling the emission of
the ~m-[CII] line and CRRLs as arising from a PDR we derive a thermal
pressure K cm and a radiation field
close to the Trapezium. Conclusions. This work provides
additional observational support for the use of CRRLs and the 158 m-[CII]
line as complementary tools to study dense and diffuse PDRs, and highlights the
usefulness of CRRLs as probes of the C/C/CO interface.Comment: 18 pages, 16 figures, accepted for publication in A&
A swollen phase observed between the liquid-crystalline phase and the interdigitated phase induced by pressure and/or adding ethanol in DPPC aqueous solution
A swollen phase, in which the mean repeat distance of lipid bilayers is
larger than the other phases, is found between the liquid-crystalline phase and
the interdigitated gel phase in DPPC aqueous solution. Temperature, pressure
and ethanol concentration dependences of the structure were investigated by
small-angle neutron scattering, and a bending rigidity of lipid bilayers was by
neutron spin echo. The nature of the swollen phase is similar to the anomalous
swelling reported previously. However, the temperature dependence of the mean
repeat distance and the bending rigidity of lipid bilayers are different. This
phase could be a precursor to the interdigitated gel phase induced by pressure
and/or adding ethanol.Comment: 7 pages, 6 figure
On the strong impact of doping in the triangular antiferromagnet CuCrO2
Electronic band structure calculations using the augmented spherical wave
method have been performed for CuCrO2. For this antiferromagnetic (T_N = 24 K)
semiconductor crystallizing in the delafossite structure, it is found that the
valence band maximum is mainly due to the t_2g orbitals of Cr^3+ and that spin
polarization is predicted with 3 mu_B per Cr^3+. The structural
characterizations of CuCr1-xMgxO2 reveal a very limited range of Mg^2+
substitution for Cr^3+ in this series. As soon as x = 0.02, a maximum of 1% Cr
ions substituted by Mg site is measured in the sample. This result is also
consistent with the detection of Mg spinel impurities from X-ray diffraction
for x = 0.01. This explains the saturation of the Mg^2+ effect upon the
electrical resistivity and thermoelectric power observed for x > 0.01. Such a
very weak solubility limit could also be responsible for the discrepancies
found in the literature. Furthermore, the measurements made under magnetic
field (magnetic susceptibility, electrical resistivity and Seebeck coefficient)
support that the Cr^4+ "holes", created by the Mg^2+ substitution, in the
matrix of high spin Cr^3+ (S = 3/2) are responsible for the transport
properties of these compounds.Comment: 9 pages, 11 figures, more information at
http://www.physik.uni-augsburg.de/~eyert
'A habitual disposition to the good': on reason, virtue and realism
Amidst the crisis of instrumental reason, a number of contemporary political philosophers including Jürgen Habermas have sought to rescue the project of a reasonable humanism from the twin threats of religious fundamentalism and secular naturalism. In his recent work, Habermas defends a post-metaphysical politics that aims to protect rationality against encroachment while also accommodating religious faith within the public sphere. This paper contends that Habermas’ post-metaphysical project fails to provide a robust alternative either to the double challenge of secular naturalism and religious fundamentalism or to the ruthless instrumentalism that underpins capitalism. By contrast with Habermas and also with the ‘new realism’ of contemporary political philosophers such as Raymond Geuss or Bernard Williams, realism in the tradition of Plato and Aristotle can defend reason against instrumental rationality and blind belief by integrating it with habit, feeling and even faith. Such metaphysical–political realism can help develop a politics of virtue that goes beyond communitarian thinking by emphasising plural modes of association (not merely ‘community’), substantive ties of sympathy and the importance of pursuing goodness and mutual flourishing
The Tacrolimus Metabolism Rate Influences Renal Function after Kidney Transplantation
The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient’s risk management strategies.</p
The Role of the Spleen in Lymphocyte Migration
In all species studied so far it was found that more lymphocytes migrate to the spleen than to all the lymph nodes together. Specific molecules on lymphocytes and endothelial cells regulate their entry into lymph nodes, but none of the known molecules play a role in homing to the spleen. The splenic compartments, comprising the red pulp, marginal zone, periarterial lymphatic sheath (PALS) and follicles, all show different kinetics for migrating lymphocytes. By combining 51Cr lymphocyte labeling with morphometry and two color immunohistochemistry, the migratory route of lymphocyte subsets can be followed through the spleen and absolute numbers of lymphocytes calculated in each compartment. T lymphocytes home preferentially to the PALS and B lymphocytes home not only to follicles but also in large numbers to the marginal zone and red pulp. CD4+ and CD8+ lymphocytes migrate similarly at early time points, but at 24 hours CD4+ lymphocytes are preferentially found in the PALS with CD8+ lymphocytes in the red pulp and marginal zone. The functional significance of the different routes of lymphocytes through the spleen has yet to be defined in relationship to specific immune functions and regulatory factors on splenic lymphocyte homing
- …
