621 research outputs found

    Polarization entangled state measurement on a chip

    Full text link
    The emerging strategy to overcome the limitations of bulk quantum optics consists of taking advantage of the robustness and compactness achievable by the integrated waveguide technology. Here we report the realization of a directional coupler, fabricated by femtosecond laser waveguide writing, acting as an integrated beam splitter able to support polarization encoded qubits. This maskless and single step technique allows to realize circular transverse waveguide profiles able to support the propagation of Gaussian modes with any polarization state. Using this device, we demonstrate the quantum interference with polarization entangled states and singlet state projection.Comment: Revtex, 5+2 pages (with supplementary information), 4+1 figure

    Functional characterization and structure-guided mutational analysis of the transsulfuration enzyme cystathionine γ-lyase from toxoplasma gondii

    Get PDF
    Sulfur-containing amino acids play essential roles in many organisms. The protozoan parasite Toxoplasma gondii includes the genes for cystathionine β-synthase and cystathionine γ-lyase (TgCGL), as well as for cysteine synthase, which are crucial enzymes of the transsulfuration and de novo pathways for cysteine biosynthesis, respectively. These enzymes are specifically expressed in the oocyst stage of T. gondii. However, their functionality has not been investigated. Herein, we expressed and characterized the putative CGL from T. gondii. Recombinant TgCGL almost exclusively catalyses the α,γ-hydrolysis of L-cystathionine to form L-cysteine and displays marginal reactivity toward L-cysteine. Structure-guided homology modelling revealed two striking amino acid differences between the human and parasite CGL active-sites (Glu59 and Ser340 in human to Ser77 and Asn360 in toxoplasma). Mutation of Asn360 to Ser demonstrated the importance of this residue in modulating the specificity for the catalysis of α,β-versus α,γ-elimination of L-cystathionine. Replacement of Ser77 by Glu completely abolished activity towards L-cystathionine. Our results suggest that CGL is an important functional enzyme in T. gondii, likely implying that the reverse transsulfuration pathway is operative in the parasite; we also probed the roles of active-site architecture and substrate binding conformations as determinants of reaction specificity in transsulfuration enzymes

    Engineering a C-Phase quantum gate: optical design and experimental realization

    Full text link
    A two qubit quantum gate, namely the C-Phase, has been realized by exploiting the longitudinal momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric setup adopted to generate and characterize 2-photon 4-qubit Phased Dicke states. Some experimental results, dealing with the characterization of multipartite entanglement of the Phased Dicke states are also discussed in detail.Comment: accepted for publication on EPJ

    Thyroid ultrasonography reporting: consensus of Italian Thyroid Association (AIT), Italian Society of Endocrinology (SIE), Italian Society of Ultrasonography in Medicine and Biology (SIUMB) and Ultrasound Chapter of Italian Society of Medical Radiology (SIRM)

    Get PDF
    Thyroid ultrasonography (US) is the gold standard for thyroid imaging and its widespread use is due to an optimal spatial resolution for superficial anatomic structures, a low cost and the lack of health risks. Thyroid US is a pivotal tool for the diagnosis and follow-up of autoimmune thyroid diseases, for assessing nodule size and echostructure and defining the risk of malignancy in thyroid nodules. The main limitation of US is the poor reproducibility, due to the variable experience of the operators and the different performance and settings of the equipments. Aim of this consensus statement is to standardize the report of thyroid US through the definition of common minimum requirements and a correct terminology. US patterns of autoimmune thyroid diseases are defined. US signs of malignancy in thyroid nodules are classified and scored in each nodule. We also propose a simplified nodule risk stratification, based on the predictive value of each US sign, classified and scored according to the strength of association with malignancy, but also to the estimated reproducibility among different operators

    High-dimensional decoy-state quantum key distribution over 0.3 km of multicore telecommunication optical fibers

    Get PDF
    Multiplexing is a strategy to augment the transmission capacity of a communication system. It consists of combining multiple signals over the same data channel and it has been very successful in classical communications. However, the use of enhanced channels has only reached limited practicality in quantum communications (QC) as it requires the complex manipulation of quantum systems of higher dimensions. Considerable effort is being made towards QC using high-dimensional quantum systems encoded into the transverse momentum of single photons but, so far, no approach has been proven to be fully compatible with the existing telecommunication infrastructure. Here, we overcome such a technological challenge and demonstrate a stable and secure high-dimensional decoy-state quantum key distribution session over a 0.3 km long multicore optical fiber. The high-dimensional quantum states are defined in terms of the multiple core modes available for the photon transmission over the fiber, and the decoy-state analysis demonstrates that our technique enables a positive secret key generation rate up to 25 km of fiber propagation. Finally, we show how our results build up towards a high-dimensional quantum network composed of free-space and fiber based linksComment: Please see the complementary work arXiv:1610.01812 (2016

    Macroseismic effects highlight site response in Rome and its geological signature

    Get PDF
    A detailed analysis of the earthquake effects on the urban area of Rome has been conducted for the L’Aquila sequence, which occurred in April 2009, by using an on-line macroseismic questionnaire. Intensity residuals calculated using the mainshock and four aftershocks are analyzed in the light of a very accurate and original geological reconstruction of the subsoil of Rome based on a large amount of wells. The aim of this work is to highlight ground motion amplification areas and to find a correlation with the geological settings at a sub-regional scale, putting in evidence the extreme complexity of the phenomenon and the difficulty of making a simplified model. Correlations between amplification areas and both near-surface and deep geology were found. Moreover, the detailed scale of investigation has permitted us to find a correlation between seismic amplification in recent alluvial settings and subsiding zones, and between heard seismic sound and Tiber alluvial sediments
    • …
    corecore