109 research outputs found

    Fat–Fit Patterns, Drug Consumption, and Polypharmacy in Older Adults: The EXERNET Multi-Center Study

    Get PDF
    Background: Physical fitness levels and the amount of accumulated adipose tissue (fatness) relate to current and future individuals’ heath status. Nevertheless, the interrelationships of their combined patterns with polypharmacy and the types of medications consumed have not been sufficiently investigated. Methods: This cross-sectional study was carried out in six Spanish regions between 2008 and 2009 with a sample of older community-dwelling adults (≥65 years old) without dementia or cancer. Fitness was measured with one-leg balance and senior fitness tests, as well as by measuring weight and fat mass with a bioelectrical impedance analyzer. Polypharmacy was defined as the use of five or more medications. An analysis of variance was performed for comparisons between the physical fitness and fatness patterns and the medication consumed. Results: A total of 1709 elders were included in the study (72.1 ± 5.2 years). The two unfit patterns were those with the highest drug consumption. The High-Fat–Unfit pattern was the one that had the most significant consumption and had the highest percentage of polymedicated subjects. The Low-Fat–Fit pattern had a significantly lower percentage of people that did not consume any medications. The highest percentages of drug consumption in 7 of the 10 groups that were included were concentrated in the two unfit patterns. Conclusions: This study highlights the importance of fitness in older adults, as it is at least as important as the avoidance of accumulation of excess fat with respect to the consumption of a smaller number of medicines

    Wnt signaling and orthopedics, an overview

    Get PDF
    Wnt signaling is a ubiquitous system for intercellular communication, with multiple functions during development and in homeostasis of the body. It comprises several ligands, receptors, and inhibitors. Some molecules, such as sclerostin, appear to have bone-specific functions, and can be targeted by potential drugs. Now, ongoing clinical trials are testing these drugs as treatments for osteoporosis. Animal studies have also suggested that these drugs can accelerate fracture healing and implant fixation. This brief overview focuses on currently available information on the effects of manipulations of Wnt signaling on bone healing

    Comprehensive in vitro and in vivo studies of novel melt-derived Nb-substituted 45S5 bioglass reveal its enhanced bioactive properties for bone healing

    Get PDF
    The present work presents and discusses the results of a comprehensive study on the bioactive properties of Nb-substituted silicate glass derived from 45S5 bioglass. In vitro and in vivo experiments were performed. We undertook three different types of in vitro analyses: (i) investigation of the kinetics of chemical reactivity and the bioactivity of Nb-substituted glass in simulated body fluid (SBF) by 31P MASNMR spectroscopy, (ii) determination of ionic leaching profiles in buffered solution by inductively coupled plasma optical emission spectrometry (ICP-OES), and (iii) assessment of the compatibility and osteogenic differentiation of human embryonic stem cells (hESCs) treated with dissolution products of different compositions of Nb-substituted glass. The results revealed that Nb-substituted glass is not toxic to hESCs. Moreover, adding up to 1.3 mol% of Nb2O5 to 45S5 bioglass significantly enhanced its osteogenic capacity. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their biocompatibility and bioactivity. Results showed all Nb-containing glass was biocompatible and that the addition of 1.3 mol% of Nb2O5, replacing phosphorous, increases the osteostimulation of bioglass. Therefore, these results support the assertion that Nb-substituted glass is suitable for biomedical applications

    Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery

    Get PDF
    Background Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing. It enables precise development of a scaffold from different available biomaterials that mimic the shape, size, and dimension of a defect without relying only on the surgeon’s skills and capabilities, and subsequently, may enhance surgical outcomes and, in turn, patient satisfaction and quality of life. Review This review summarizes different biomaterial classes that can be used in 3D bioprinters as bioinks to fabricate bone scaffolds, including polymers, bioceramics, and composites. It also describes the advantages and limitations of the three currently used 3D bioprinting technologies: inkjet bioprinting, micro-extrusion, and laser-assisted bioprinting. Conclusions Although 3D bioprinting technology is still in its infancy and requires further development and optimization both in biomaterials and techniques, it offers great promise and potential for facial reconstruction with improved outcome

    Role of the N-terminal peptide of amelogenin on osteoblastic differentiation of human mesenchymal stem cells

    No full text
    Porcine enamel matrix derivative (pEMD), a complex mixture of proteins and peptides including full-length amelogenin protein, splice variants, and proteolytic peptides, is used clinically with a carrier to regenerate supportive tissue around teeth. During application, pEMD self-assembles as nanospheres and precipitates as a three-dimensional matrix to facilitate cell migration and differentiation. Amelogenin, the primary constituent of pEMD, stimulates osteoblast differentiation, but it is unclear what specific roles other components of pEMD play in determining biological response. This study examined the potential of one constituent of pEMD, the N-terminal amelogenin peptide (NTAP), to promote osteoblastic differentiation of human mesenchymal stem cells (MSCs) and to elucidate possible signaling pathways involved. Effects of porcine NTAP on MSC cultures were compared to those of recombinant human amelogenin. While amelogenin induced MSC osteoblastic differentiation, a more robust osteoblastic response was seen after NTAP treatment. A phospho-kinase proteasome array measuring phosphorylation of 35 proteins indicated that protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2), and β-catenin were highly phosphorylated by NTAP. This was confirmed by measuring PKC activity and levels of phospho-ERK1/2 and β-catenin. Both amelogenin and NTAP increased PKC, but NTAP induced higher phosho-ERK1/2 and phospho-β-catenin than amelogenin. ERK1/2 inhibition blocked both amelogenin- and NTAP-induced increases in RUNX2, ALP, OCN, COL1, and BMP2. The results demonstrate that NTAP induces osteogenic differentiation of MSCs via PKC and ERK1/2 activation and β-catenin degradation. NTAP may be an active bone regeneration component of amelogenin, and may play this role in pEMD-stimulated periodontal regeneration
    • …
    corecore