8,377 research outputs found

    On non-uniqueness in the traction boundary- value problem for a compressible elastic solid

    Get PDF
    For a compressible isotropic elastic solid local and global non-uniqueness of the homogeneous deformation resulting from prescribed dead-load boundary tractions is examined. In particular, for the plane-strain problem with equibiaxial in-plane tension, equations governing the paths of deformation branching from the bifurcation point on a deformation path corresponding to in-plane pure dilatation are derived. Explicit calculations are given for a specific strain-energy function and the stability of the branches is discussed. Some general results are then given for an arbitrary form of strain-energy function

    On large bending deformations of transversely isotropic rectangular elastic blocks

    Get PDF
    In this paper we examine the classical problem of finite bending of a rectangular block of elastic material into a sector of a circular cylindrical tube in respect of compressible transversely isotropic elastic materials. More specifically, we consider the possible existence of isochoric solutions. In contrast to the corresponding problem for isotropic materials, for which such solutions do not exist for a compressible material, we determine conditions on the form of the strain-energy function for which isochoric solutions are possible. The results are illustrated for particular classes of energy function

    Hyperelastic cloaking theory: Transformation elasticity with pre-stressed solids

    Full text link
    Transformation elasticity, by analogy with transformation acoustics and optics, converts material domains without altering wave properties, thereby enabling cloaking and related effects. By noting the similarity between transformation elasticity and the theory of incremental motion superimposed on finite pre-strain it is shown that the constitutive parameters of transformation elasticity correspond to the density and moduli of small-on-large theory. The formal equivalence indicates that transformation elasticity can be achieved by selecting a particular finite (hyperelastic) strain energy function, which for isotropic elasticity is semilinear strain energy. The associated elastic transformation is restricted by the requirement of statically equilibrated pre-stress. This constraint can be cast as \tr {\mathbf F} = constant, where F\mathbf{F} is the deformation gradient, subject to symmetry constraints, and its consequences are explored both analytically and through numerical examples of cloaking of anti-plane and in-plane wave motion.Comment: 20 pages, 5 figure
    corecore