Transformation elasticity, by analogy with transformation acoustics and
optics, converts material domains without altering wave properties, thereby
enabling cloaking and related effects. By noting the similarity between
transformation elasticity and the theory of incremental motion superimposed on
finite pre-strain it is shown that the constitutive parameters of
transformation elasticity correspond to the density and moduli of
small-on-large theory. The formal equivalence indicates that transformation
elasticity can be achieved by selecting a particular finite (hyperelastic)
strain energy function, which for isotropic elasticity is semilinear strain
energy. The associated elastic transformation is restricted by the requirement
of statically equilibrated pre-stress. This constraint can be cast as \tr
{\mathbf F} = constant, where F is the deformation gradient,
subject to symmetry constraints, and its consequences are explored both
analytically and through numerical examples of cloaking of anti-plane and
in-plane wave motion.Comment: 20 pages, 5 figure