171 research outputs found

    Investor protection through model case procedures – implementing collective goals and individual rights under the 2012 Amendment of the German Capital Markets Model Case Act (KapMuG)

    Get PDF
    The German Capital Markets Model Case Act (KapMuG) and its amendment of 2012 highlight some fundamentals of collective redress in civil law countries at the example of model case procedures in the field of investor protection. That is why a survey of the ongoing activities of the European Union in the area of collective redress and of its repercussions on the member state level forms a suitable basis for the following analysis of the 2012 amendment of the KapMuG. It clearly brings into focus a shift from sector-specific regulation with an emphasis on the cross-border aspect of protecting consumers towards a “coherent approach” strengthening the enforcement of EU law. As a result, regulatory policy and collective redress are two sides of the same coin today. With respect to the KapMuG such a development brings about some tension between its aim to aggregate small individual claims as efficiently as possible and the dominant role of individual procedural rights in German civil procedure. This conflict can be illustrated by some specific rules of the KapMuG: its scope of application, the three-tier procedure of a model case procedure, the newly introduced notification of claims and the new opt-out settlement under the amended §§ 17-19

    Line Intensities and Molecular Opacities of the FeH F4ΔiX4ΔiF^4\Delta_i-X^4\Delta_i Transition

    Full text link
    We calculate new line lists and opacities for the F4ΔiX4ΔiF^4\Delta_i-X^4\Delta_i transition of FeH. The 0-0 band of this transition is responsible for the Wing-Ford band seen in M-type stars, sunspots and brown dwarfs. The new Einstein A values for each line are based on a high level ab initio calculation of the electronic transition dipole moment. The necessary rotational line strength factors (H\"onl-London factors) are derived for both the Hund's case (a) and (b) coupling limits. A new set of spectroscopic constants were derived from the existing FeH term values for v=0, 1 and 2 levels of the XX and FF states. Using these constants extrapolated term values were generated for v=3 and 4 and for JJ values up to 50.5. The line lists (including Einstein A values) for the 25 vibrational bands with v\leq4 were generated using a merged list of experimental and extrapolated term values. The FeH line lists were use to compute the molecular opacities for a range of temperatures and pressures encountered in L and M dwarf atmospheres. Good agreement was found between the computed and observed spectral energy distribution of the L5 dwarf 2MASS-1507.Comment: 52 pages, 3 figures, many tables, accepted for publication in the Astrophysical Journal Supplement

    A Three Micron Survey of the Chamaeleon I Dark Cloud

    Get PDF
    We describe an L-band photometric survey of 0.5 square deg of the Cha I dark cloud. The survey has a completeness limit of L < 11.0. Our survey detects 124 sources, including all known pre-main sequence stars with L < 11. The fraction of sources with near-IR excess emission is 58% +- 4% for K = 9-11. Cha I sources have bluer H-K and K-L colors than pre-main sequence stars in Taurus-Auriga. These sources also have a strong correlation between EW(H-alpha) and K-L. Stars with K-L 0.6 have strong H-alpha emission. Because many Cha I sources are heavily reddened, this division between weak emission T Tauri stars and classical T Tauri stars occurs at a redder K-L than in Taurus-Auriga.Comment: 12 pages of text, 4 figures, and 1 three page table of data modified version adds reference and acknowledgemen

    Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell

    Get PDF
    High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the structure of such biomolecular systems. However, existing systems are not optimized for the requirements of fibrous proteins. We have designed and built a low-volume (200 μL), low-wavelength (down to 180 nm), low-pathlength (100 μm), high-alignment flow-alignment system (couette) to perform ultraviolet linear dichroism studies on the fibers formed by a range of biomolecules. The apparatus has been tested using a number of proteins for which longer wavelength linear dichroism spectra had already been measured. The new couette cell has also been used to obtain data on two medically important protein fibers, the all-β-sheet amyloid fibers of the Alzheimer's derived protein Aβ and the long-chain assemblies of α1-antitrypsin polymers

    The Disk Population of the Chamaeleon I Star-Forming Region

    Full text link
    We present a census of circumstellar disks in the Chamaeleon I star-forming region. Using the Infrared Array Camera and the Multiband Imaging Photometer onboard the Spitzer Space Telescope, we have obtained images of Chamaeleon I at 3.6, 4.5, 5.8, 8.0, and 24 um. To search for new disk-bearing members of the cluster, we have performed spectroscopy on objects that have red colors in these data. Through this work, we have discovered four new members of Chamaeleon I with spectral types of M4, M6, M7.5, and L0. The first three objects are highly embedded (A_J~5) and reside near known protostars, indicating that they may be among the youngest low-mass sources in the cluster (<1 Myr). The L0 source is the coolest known member of Chamaeleon I. Its luminosity implies a mass of 0.004-0.01 M_sun, making it the least massive brown dwarf for which a circumstellar disk has been reliably detected. To characterize the disk population in Chamaeleon I, we have classified the infrared spectral energy distributions of the 203 known members that are encompassed by the Spitzer images. Through these classifications, we find that the disk fraction in Chamaeleon I is roughly constant at ~50% from 0.01 to 0.3 M_sun. These data are similar to the disk fraction of IC 348, which is a denser cluster at the same age as Chamaeleon I. However, the disk fraction at M>1 M_sun is significantly higher in Chamaeleon I than in IC 348 (65% vs. 20%), indicating longer disk lifetimes in Chamaeleon I for this mass range. Thus, low-density star-forming regions like Chamaeleon I may offer more time for planet formation around solar-type stars than denser clusters

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page

    Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud

    Get PDF
    Aperture synthesis and single-dish (sub) millimeter molecular lines and continuum observations reveal in great detail the envelope structure of deeply embedded young stellar objects (SMM1, SMM2, SMM3, SMM4) in the densely star-forming Serpens Molecular Cloud. Resolved millimeter continuum emission constrains the density structure to a radial power law with index -2.0 +/- 0.5, and envelope masses of 8.7, 3.0, and 5.3 M_sol for SMM1, SMM3, and SMM4. The core SMM2 does not seem to have a central condensation and may not have formed a star yet. The molecular line observations can be described by the same envelope model, if an additional, small amount of warm (100 K) material is included. This probably corresponds to the inner few hundred AU of the envelope were the temperature is high. In the interferometer beam, the molecular lines reveal the inner regions of the envelopes, as well as interaction of the outflow with the surrounding envelope. Bright HCO+ and HCN emission outlines the cavities, while SiO and SO trace the direct impact of the outflow on ambient gas. Taken together, these observations provide a first comprehensive view of the physical and chemical structure of the envelopes of deeply embedded young stellar objects in a clustered environment on scales between 1000 and 10,000 AU.Comment: 46 pages, incl. 12 postscript figures, uses ApJ latex and psfig macro

    First detection of NH3 (1,0 - 0,0) from a low mass cloud core: On the low ammonia abundance of the rho Oph A core

    Full text link
    Odin has successfully observed the molecular core rho Oph A in the 572.5 GHz rotational ground state line of ammonia, NH3 (J,K = 1,0 - 0,0). The interpretation of this result makes use of complementary molecular line data obtained from the ground (C17O and CH3OH) as part of the Odin preparatory work. Comparison of these observations with theoretical model calculations of line excitation and transfer yields a quite ordinary abundance of methanol, X(CH3OH) = 3e-9. Unless NH3 is not entirely segregated from C17O and CH3OH, ammonia is found to be significantly underabundant with respect to typical dense core values, viz. X(NH3) = 8e-10.Comment: 4 pages, 2 figures, 2 tables, to appear in Astron. Astrophys. Letter

    A Census of the Chamaeleon I Star-Forming Region

    Full text link
    Optical spectroscopy has been obtained for 179 objects that have been previously identified as possible members of the cluster, that lack either accurate spectral types or clear evidence of membership, and that are optically visible (I<18). I have used these spectroscopic data and all other available constraints to evaluate the spectral classifications and membership status of a total sample of 288 candidate members of Chamaeleon I that have appeared in published studies of the cluster. The latest census of Chamaeleon I now contains 158 members, 8 of which are later than M6 and thus are likely to be brown dwarfs. I find that many of the objects identified as members of Chamaeleon I in recent surveys are actually field stars. Meanwhile, 7 of 9 candidates discovered by Carpenter and coworkers are confirmed as members, one of which is the coolest known member of Chamaeleon I at a spectral type of M8 (~0.03 M_sun). I have estimated extinctions, luminosities, and effective temperatures for the members and used these data to construct an H-R diagram for the cluster. Chamaeleon I has a median age of ~2 Myr according to evolutionary models, and hence is similar in age to IC 348 and is slightly older than Taurus (~1 Myr). The measurement of an IMF for Chamaeleon I from this census is not possible because of the disparate methods with which the known members were originally selected, and must await an unbiased, magnitude-limited survey of the cluster.Comment: 59 pages, 22 figure
    corecore