524 research outputs found

    Should we perform multiparametric magnetic resonance imaging of the bladder before transurethral resection of bladder? Time to reconsider the rules

    Get PDF
    We would like to congratulate Ueno and colleagues [1] on their paper on diagnostic accuracy and interobserver agreement for the new Vesical Imaging-Reporting and Data System (VI-RADS) [2] for muscle-invasive bladder cancer (MIBC) in this issue of European Urology. Their report on 74 patients who underwent multiparametric magnetic resonance imaging (mpMRI) before transurethral resection of bladder tumor (TURBT) raises great interest in the RADS (Reporting and Data Systems) era. They address the questions of reproducibility and diagnostic performance of mpMRI in the setting of bladder ca (BC), in which potential applications of this imaging technique have seen constant growth in the past decades without a definitive role having been identified

    Chandra detection of extended X-ray emission from the recurrent nova RS Ophiuchi

    Full text link
    Radio, infrared, and optical observations of the 2006 eruption of the symbiotic recurrent nova RS Ophiuchi (RS Oph) showed that the explosion produced non-spherical ejecta. Some of this ejected material was in the form of bipolar jets to the east and west of the central source. Here we describe Xray observations taken with the Chandra X-ray Observatory one and a half years after the beginning of the outburst that reveal narrow, extended structure with a position angle of approximately 300 degrees (east of north). Although the orientation of the extended feature in the X-ray image is consistent with the readout direction of the CCD detector, extensive testing suggests that the feature is not an artifact. Assuming it is not an instrumental effect, the extended X-ray structure shows hot plasma stretching more than 1,900 AU from the central binary (taking a distance of 1.6 kpc). The X-ray emission is elongated in the northwest direction - in line with the extended infrared emission and some minor features in the published radio image. It is less consistent with the orientation of the radio jets and the main bipolar optical structure. Most of the photons in the extended X-ray structure have energies of less than 0.8 keV. If the extended X-ray feature was produced when the nova explosion occurred, then its 1".2 length as of 2007 August implies that it expanded at an average rate of more than 2 mas/d, which corresponds to a flow speed of greater than 6,000 km/s (d/1.6 kpc) in the plane of the sky. This expansion rate is similar to the earliest measured expansion rates for the radio jets.Comment: accepted in Ap

    Universal emergence of the one-third plateau in the magnetization process of frustrated quantum spin chains

    Full text link
    We present a numerical study of the magnetization process of frustrated quantum spin-S chains with S=1, 3/2, 2 as well as the classical limit. Using the exact diagonalization and density-matrix renormalization techniques, we provide evidence that a plateau at one third of the saturation magnetization exists in the magnetization curve of frustrated spin-S chains with S>1/2. Similar to the case of S=1/2, this plateau state breaks the translational symmetry of the Hamiltonian and realizes an up-up-down pattern in the spin component parallel to the external field. Our study further shows that this plateau exists both in the cases of an isotropic exchange and in the easy-axis regime for spin-S=1, 3/2, and 2, but is absent in classical frustrated spin chains with isotropic interactions. We discuss the magnetic phase diagram of frustrated spin-1 and spin-3/2 chains as well as other emergent features of the magnetization process such as kink singularities, jumps, and even-odd effects. A quantitative comparison of the one-third plateau in the easy-axis regime between spin-1 and spin-3/2 chains on the one hand and the classical frustrated chain on the other hand indicates that the critical frustration and the phase boundaries of this state rapidly approach the classical result as the spin S increases.Comment: 15 pages RevTex4, 13 figure

    Experimental Verification of the Gapless Point in the SS=1 Antiferromagnetic Bond Alternating Chain

    Full text link
    Susceptibility and high field magnetization measurements have been performed on powder samples of an SS=1 bond alternating chain compound [\{Ni(333-tet)(μ\mu-N3_3)\}n_n](ClO4_4)n_n (333-tet=tetraamine N,N'-bis(3-aminopropyl)-1,3-propanediamine). As the temperature is decreased, the susceptibility exhibits a round maximum at around 120 K and decreases gradually down to 10 K, and then falls down rapidly with a logarithmic curvature which is behavior of the susceptibility of a gapless or a nearly gapless antiferromagnetic chain. Magnetization up to 50 T at 1.4 K shows no or a very small gap in this compound. We have carried out numerical calculations for the SS=1 antiferromagnetic bond alternating chain with various alternating ratios α\alpha and obtained a very good agreement between experiments and calculations for α\alpha=0.6. We verify experimentally that the gapless point exists around α\alpha=0.6.Comment: 12 pages, 4 Postscript figures, uses REVTE

    Nonuniform Neutron-Rich Matter and Coherent Neutrino Scattering

    Full text link
    Nonuniform neutron-rich matter present in both core-collapse supernovae and neutron-star crusts is described in terms of a semiclassical model that reproduces nuclear-matter properties and includes long-range Coulomb interactions. The neutron-neutron correlation function and the corresponding static structure factor are calculated from molecular dynamics simulations involving 40,000 to 100,000 nucleons. The static structure factor describes coherent neutrino scattering which is expected to dominate the neutrino opacity. At low momentum transfers the static structure factor is found to be small because of ion screening. In contrast, at intermediate momentum transfers the static structure factor displays a large peak due to coherent scattering from all the neutrons in a cluster. This peak moves to higher momentum transfers and decreases in amplitude as the density increases. A large static structure factor at zero momentum transfer, indicative of large density fluctuations during a first-order phase transition, may increase the neutrino opacity. However, no evidence of such an increase has been found. Therefore, it is unlikely that the system undergoes a simple first-order phase transition. It is found that corrections to the commonly used single heavy nucleus approximation first appear at a density of the order of 101310^{13} g/cm3^3 and increase rapidly with increasing density. Thus, neutrino opacities are overestimated in the single heavy nucleus approximation relative to the complete molecular dynamics simulations.Comment: 17 pages, 23 included ps figure

    Product Wave Function Renormalization Group: construction from the matrix product point of view

    Full text link
    We present a construction of a matrix product state (MPS) that approximates the largest-eigenvalue eigenvector of a transfer matrix T, for the purpose of rapidly performing the infinite system density matrix renormalization group (DMRG) method applied to two-dimensional classical lattice models. We use the fact that the largest-eigenvalue eigenvector of T can be approximated by a state vector created from the upper or lower half of a finite size cluster. Decomposition of the obtained state vector into the MPS gives a way of extending the MPS, at the system size increment process in the infinite system DMRG algorithm. As a result, we successfully give the physical interpretation of the product wave function renormalization group (PWFRG) method, and obtain its appropriate initial condition.Comment: 8 pages, 8 figure

    Silicate dust in the environment of RS Ophiuchi following the 2006 eruption

    Full text link
    We present further Spitzer Space Telescope observations of the recurrent nova RS Ophiuchi, obtained over the period 208-430 days after the 2006 eruption. The later Spitzer IRS data show that the line emission and free-free continuum emission reported earlier is declining, revealing incontrovertible evidence for the presence of silicate emission features at 9.7 and 18microns. We conclude that the silicate dust survives the hard radiation impulse and shock blast wave from the eruption. The existence of the extant dust may have significant implications for understanding the propagation of shocks through the red giant wind and likely wind geometry.Comment: 12 pages, 4 figures, accepted for publication in ApJ (Letters

    Double radio peak and non-thermal collimated ejecta in RS Ophiuchi following the 2006 outburst

    Get PDF
    We report Multi-Element Radio-Linked Interferometer Network, Very Large Array, One-Centimetre Radio Array, Very Long Baseline Array (VLBA), Effelsberg and Giant Metrewave Radio Telescope observations beginning 4.5 days after the discovery of RS Ophiuchi undergoing its 2006 recurrent nova outburst. Observations over the first 9 weeks are included, enabling us to follow spectral development throughout the three phases of the remnant development. We see dramatic brightening on days 4 to 7 at 6 GHz and an accompanying increase in other bands, particularly 1.46 GHz, consistent with transition from the initial ‘free expansion’ phase to the adiabatic expansion phase. This is complete by day 13 when the flux density at 5 GHz is apparently declining from an unexpectedly early maximum (compared with expectations from observations of the 1985 outburst). The flux density recovered to a second peak by approximately day 40, consistent with behaviour observed in 1985. At all times the spectral index is consistent with mixed non-thermal and thermal emission. The spectral indices are consistent with a non-thermal component at lower frequencies on all dates, and the spectral index changes show that the two components are clearly variable. The estimated extent of the emission at 22 GHz on day 59 is consistent with the extended east and west features seen at 1.7 GHz with the VLBA on day 63 being entirely non-thermal. We suggest a two-component model, consisting of a decelerating shell seen in mixed thermal and non-thermal emission plus faster bipolar ejecta generating the non-thermal emission, as seen in contemporaneous VLBA observations. Our estimated ejecta mass of 4 ± 2 × 10−7 M⊙ is consistent with a white dwarf (WD) mass of 1.4 M⊙. It may be that this ejecta mass estimate is a lower limit, in which case a lower WD mass would be consistent with the data
    • …
    corecore