1,792 research outputs found

    Transient-forced convection film boiling on an isothermal flat plate

    Get PDF
    An approach for the solution of transient-forced convection film boiling on an isothermal flat plate using the boundary layer model is developed. The similarity variables are used to convert the governing partial differential equations to ordinary ones. The results of numerical solutions of these ordinary equations indicate that the transient process can be classified as one-dimensional conduction, intermediate, and the steady state regions. The time required for the one-dimensional conduction and the time necessary to attain a steady state condition are obtained. The influence of interfacial shear is seen to be negligible while the Prandtl Number and the ratio (C sub p delta T divided by h sub fg times Pr) have major influence. The use of local similarity approximations for the intermediate regime facilitates prediction of complete boundary layer growth. Using the ratio of time at any instant to the steady state time as abscissa, the curves representing the boundary layer growth can be merged into a single mean curve within 5 percent. Further, the analysis shows that the average rate of heat transfer during transient is 50 to 100 percent higher than those at steady state. The average rate of vapor convected away is 10 to 15 percent lower than at steady state while the average rate of accumulation to form the vapor layer is 1 to 14 times larger. Further, the total heat transferred during transient increases and the evaporation decreases for increasing values of C sub p delta T divided by h sub fg times P

    Electric fields and double layers in plasmas

    Get PDF
    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed

    Estimation of Radioprotective Effects of Garcinia Indica Methanol Extract in Swiss Albino Mice

    Get PDF
    The radio protective effectiveness of methanol extract of Garcinia indica against whole body gamma radiation was premeditated in Swiss albino mice. The oral administration of Garcinia indica extract at 800 mg / kg body weight / day for 15 consecutive days before whole body exposure to radiation was found to be effective with the LD50/30 values of 7.21 and 8.83 Gy for irradiation alone and Garcinia indica andirradiation group, respectively, giving a dose reduction factor of 1.42. This effect of Garcinia indica as the modulation of the radiation-induced decrease of reduced glutathione and the radiation-induced increase in lipid per oxidation assessed in the liver and the bloo

    Origin of spatial variations of scattering polarization in the wings of the Ca {\sc i} 4227 \AA line

    Full text link
    Polarization that is produced by coherent scattering can be modified by magnetic fields via the Hanle effect. According to standard theory the Hanle effect should only be operating in the Doppler core of spectral lines but not in the wings. In contrast, our observations of the scattering polarization in the Ca {\sc i} 4227 \AA line reveals the existence of spatial variations of the scattering polarization throughout the far line wings. This raises the question whether the observed spatial variations in wing polarization have a magnetic or non-magnetic origin. A magnetic origin may be possible if elastic collisions are able to cause sufficient frequency redistribution to make the Hanle effect effective in the wings without causing excessive collisional depolarization, as suggested by recent theories for partial frequency redistribution with coherent scattering in magnetic fields. To model the wing polarization we apply an extended version of the technique based on the "last scattering approximation". This model is highly successful in reproducing the observed Stokes Q/IQ/I polarization (linear polarization parallel to the nearest solar limb), including the location of the wing polarization maxima and the minima around the Doppler core, but it fails to reproduce the observed spatial variations of the wing polarization in terms of magnetic field effects with frequency redistribution. This null result points in the direction of a non-magnetic origin in terms of local inhomogeneities (varying collisional depolarization, radiation-field anisotropies, and deviations from a plane-parallel atmospheric stratification).Comment: Accepted in May 2009 for publication in The Astrophysical Journa

    The quantum interference effects in the Sc II 4247 A line of the Second Solar Spectrum

    Full text link
    The Sc II 4247 A line formed in the chromosphere is one of the lines well known, like the Na I D_2 and Ba II D_2, for its prominent triple peak structure in Q/I and the underlying quantum interference effects governing it. In this paper, we try to study the nature of this triple peak structure using the theory of F-state interference including the effects of partial frequency redistribution (PRD) and radiative transfer (RT). We compare our results with the observations taken in a quiet region near the solar limb. In spite of accounting for PRD and RT effects it has not been possible to reproduce the observed triple peak structure in Q/I. While the two wing PRD peaks (on either side of central peak) and the near wing continuum can be reproduced, the central peak is completely suppressed by the enhanced depolarization resulting from the hyperfine structure splitting. This suppression remains for all the tested widely different 1D model atmospheres or for any multi-component combinations of them. While multidimensional radiative transfer effects may improve the fit to the intensity profiles, they do not appear capable of explaining the enigmatic central Q/I peak. This leads us to suspect that some aspect of quantum physics is missing.Comment: 9 pages, 16 figures, accepted for publication in The Astrophysical Journa

    Ultrasound accelerated conversion of Nα-urethane protected peptide esters to their thiopeptides using P2S5

    Get PDF
    A fast and efficient synthesis of Nα-protected thiopeptide esters from the corresponding peptide esters using P2S5 as thionating agent assisted by ultrasonication has been described. The conversion of peptide bond into thioamide was complete in 20-40 min at rt. The reaction was accomplished without using any base. The products isolated were characterized using 1H NMR, 13C NMR and mass spectroscopy. © 2008 Elsevier B.V. All rights reserved

    Polarization of line radiation in the presence of external electric quadrupole and uniform magnetic fields

    Get PDF
    The polarization of emission lines formed in a medium immersed in external electric and magnetic fields is studied. The electric field is assumed to be quadrupolar in nature, while the magnetic field is uniform. We show that the quadrupole electric field produces line splitting which is characteristically different from the Zeeman effect. While the line components emitted along the quantization axis are circularly polarized in Zeeman effect, they are, in contrast, linearly polarized in the case of a pure quadrupole electric field. The emission perpendicular to the quantization axis produces three linearly polarized components in Zeeman effect, whereas only two linearly polarized components are observed in the case of quadrupole electric fields. Lack of azimuthal symmetry in the quadrupole electric field leads to polarized line components which appear quite differently for different azimuthal angles of the line of sight

    Polarization of line radiation in the presence of external electric quadrupole and uniform magnetic fields: II. Arbitrary orientation of magnetic field

    Get PDF
    In continuation of our earlier investigation (referred to hereafter as part I) where we considered the mathematically simple case of magnetic field orientation along the Z-axis of the principal axes frame (PAF) of the electric quadrupole field, we take up here the general problem of arbitrary orientation of the magnetic field with respect to the PAF, and investigate the nature of polarized line spectra of an atom making a transition from an upper level with spin Ju to a lower level with spin Jl. Explicit formulae for the emitted Stokes parameters are obtained and we discuss their physical significance by computing numerically the cases of transitions Ju=1 â Jl=0 and Ju= 3/2 â Jl= 1/2. Specific features or signatures of the polarized line spectra are discussed as functions of the relevant physical parameters. The Stokes parameters are also analyzed in terms of the Zeeman term contributions and the cross-term contributions (which arise due to quantum interference). © 2004 Elsevier Ltd. All rights reserved

    Center to limb observations and modeling of the Ca I 4227 A line

    Full text link
    The observed center-to-limb variation (CLV) of the scattering polarization in different lines of the Second Solar Spectrum can be used to constrain the height variation of various atmospheric parameters, in particular the magnetic fields via the Hanle effect. Here we attempt to model non-magnetic CLV observations of the Q/IQ/I profiles of the Ca I 4227 A line recorded with the ZIMPOL-3 at IRSOL. For modeling, we use the polarized radiative transfer with partial frequency redistribution with a number of realistic 1-D model atmospheres. We find that all the standard FAL model atmospheres, used by us, fail to simultaneously fit the observed (II, Q/IQ/I) at all the limb distances (μ\mu). However, an attempt is made to find a single model which can provide a fit at least to the CLV of the observed Q/IQ/I instead of a simultaneous fit to the (II, Q/IQ/I) at all μ\mu. To this end we construct a new 1-D model by combining two of the standard models after modifying their temperature structures in the appropriate height ranges. This new combined model closely reproduces the observed Q/IQ/I at all the μ\mu, but fails to reproduce the observed rest intensity at different μ\mu. Hence we find that no single 1-D model atmosphere succeeds in providing a good representation of the real Sun. This failure of 1-D models does not however cause an impediment to the magnetic field diagnostic potential of the Ca I 4227 A line. To demonstrate this we deduce the field strength at various μ\mu positions without invoking the use of radiative transfer.Comment: 20 pages, 10 figures, Accepted for publication in Ap
    corecore