12,432 research outputs found

    Correlation of inflation-produced magnetic fields with scalar fluctuations

    Get PDF
    If the conformal invariance of electromagnetism is broken during inflation, then primordial magnetic fields may be produced. If this symmetry breaking is generated by the coupling between electromagnetism and a scalar field---e.g. the inflaton, curvaton, or the Ricci scalar---then these magnetic fields may be correlated with primordial density perturbations, opening a new window to the study of non-gaussianity in cosmology. In order to illustrate, we couple electromagnetism to an auxiliary scalar field in a de Sitter background. We calculate the power spectra for scalar-field perturbations and magnetic fields, showing how a scale-free magnetic field spectrum with rms amplitude of ~nG at Mpc scales may be achieved. We explore the Fourier-space dependence of the cross-correlation between the scalar field and magnetic fields, showing that the dimensionless amplitude, measured in units of the power spectra, can grow as large as ~500 H_I/M, where H_I is the inflationary Hubble constant and M is the effective mass scale of the coupling.Comment: 11 pages, 3 pdf figure

    Gravitational lensing and dynamics in SL2S\,J02140-0535: Probing the mass out to large radius

    Full text link
    We aim to probe the mass of SL2S\,J02140-0535, a galaxy group at zz = 0.44 from the Strong Lensing Legacy Survey (SL2S). We combine strong lensing modeling and dynamical constraints. The strong lensing analysis is based on multi-band HST/ACS observations exhibiting strong lensing features that we have followed-up spectroscopically with VLT/FORS2. To constrain the scale radius of an NFW mass profile that cannot be constrained by strong lensing, we propose a new method by taking advantage of the large-scale dynamical information provided by VLT/FORS2 and KECK/LRIS spectroscopy of group members. In constrast to other authors, we show that the observed lensing features in SL2S\,J02140-0535 belong to different background sources: one at zz = 1.7 ±\pm 0.1 produces three images, while the other at zz = 1.023 ±\pm 0.001 has only a single image. Our unimodal NFW mass model reproduces these images very well. It is characterized by a concentration parameter c200c_{200} = 6.0 ±\pm 0.6, which is slightly greater than the value expected from Λ\LambdaCDM simulations for a mass of M200_{200} \approx 1 ×\times 1014^{14} M_{\sun}. The spectroscopic analysis of group members also reveals a unimodal structure that exhibits no evidence of merging. We compare our dynamic mass estimate with an independent weak-lensing based mass estimate finding that both are consistent. Our combined lensing and dynamical analysis of SL2S\,J02140-0535 demonstrates the importance of spectroscopic information in reliably identifying the lensing features. Our findings argue that the system is a relaxed, massive galaxy group where mass is traced by light. This work shows a potentially useful method for constraining large-scale properties inaccessible to strong lensing, such as the scale radius of the NFW profile.Comment: Accepted for publication in A&

    Relation Discovery from Web Data for Competency Management

    Get PDF
    This paper describes a technique for automatically discovering associations between people and expertise from an analysis of very large data sources (including web pages, blogs and emails), using a family of algorithms that perform accurate named-entity recognition, assign different weights to terms according to an analysis of document structure, and access distances between terms in a document. My contribution is to add a social networking approach called BuddyFinder which relies on associations within a large enterprise-wide "buddy list" to help delimit the search space and also to provide a form of 'social triangulation' whereby the system can discover documents from your colleagues that contain pertinent information about you. This work has been influential in the information retrieval community generally, as it is the basis of a landmark system that achieved overall first place in every category in the Enterprise Search Track of TREC2006

    Mining web data for competency management

    Get PDF
    We present CORDER (COmmunity Relation Discovery by named Entity Recognition) an un-supervised machine learning algorithm that exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments

    SARCS strong lensing galaxy groups: I - optical, weak lensing, and scaling laws

    Full text link
    We present the weak lensing and optical analysis of the SL2S-ARCS (SARCS) sample of strong lens candidates. The sample is based on the Strong Lensing Legacy Survey (SL2S), a systematic search of strong lensing systems in the photometric Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). The SARCS sample focuses on arc-like features and is designed to contain mostly galaxy groups. We briefly present the weak lensing methodology that we use to estimate the mass of the SARCS objects. Among 126 candidates, we obtain a weak lensing detection for 89 objects with velocity dispersions of the Singular Isothermal Sphere mass model ranging from 350 to 1000 km/s with an average value of 600km/s, corresponding to a rich galaxy group (or poor cluster). From the galaxies belonging to the bright end of the group's red sequence (M_i<-21), we derive the optical properties of the SARCS candidates. We obtain typical richnesses of N=5-15 galaxies and optical luminosities of L=0.5-1.5e+12 Lsol (within a radius of 0.5 Mpc). We use these galaxies to compute luminosity density maps, from which a morphological classification reveals that a large fraction of the sample are groups with a complex light distribution, either elliptical or multimodal, suggesting that these objects are dynamically young structures. We finally combine the lensing and optical analyses to draw a sample of 80 most secure group candidates, i.e. weak lensing detection and over-density at the lens position in the luminosity map, to remove false detections and galaxy-scale systems from the initial sample. We use this reduced sample to probe the optical scaling relations in combination with a sample of massive galaxy clusters. We detect the expected correlations over the probed range in mass with a typical scatter of 25% in the SIS velocity dispersion at a given richness or luminosity, making these scaling laws interesting mass proxie

    VVV Survey Observations of a Microlensing Stellar Mass Black Hole Candidate in the Field of the Globular Cluster NGC 6553

    Full text link
    We report the discovery of a large timescale candidate microlensing event of a bulge stellar source based on near-infrared observations with the VISTA Variables in the Via Lactea Survey (VVV). The new microlensing event is projected only 3.5 arcmin away from the center of the globular cluster NGC 6553. The source appears to be a bulge giant star with magnitude Ks = 13.52, based on the position in the color-magnitude diagram. The foreground lens may be located in the globular cluster, which has well-known parameters such as distance and proper motions. If the lens is a cluster member, we can directly estimate its mass simply following Paczynski et al. (1996) which is a modified version of the more general case due to Refsdal. In that case, the lens would be a massive stellar remnant, with M = 1.5-3.5 Msun. If the blending fraction of the microlensing event appears to be small, and this lens would represent a good isolated black hole (BH) candidate, that would be the oldest BH known. Alternative explanations (with a larger blending fraction) also point to a massive stellar remnant if the lens is located in the Galactic disk and does not belong to the globular cluster.Comment: 5 pages, 3 figures, 1 table, accepted for publication in ApJ

    The value function of an asymptotic exit-time optimal control problem

    Full text link
    We consider a class of exit--time control problems for nonlinear systems with a nonnegative vanishing Lagrangian. In general, the associated PDE may have multiple solutions, and known regularity and stability properties do not hold. In this paper we obtain such properties and a uniqueness result under some explicit sufficient conditions. We briefly investigate also the infinite horizon problem

    Equatorial ozone characteristics as measured at Natal (5.9 deg S, 35.2 deg W)

    Get PDF
    Ozone density profiles obtained through electrochemical concentration cell (ECC) sonde measurements at Natal were analyzed. Time variations, as expected, are small. Outstanding features of the data are tropospheric densities substantially higher than those measured at other stations, and also a total ozone content that is higher than the averages given by satellite measurements
    corecore