2,749 research outputs found
Quantitative Rescattering Theory for high-order harmonic generation from molecules
The Quantitative Rescattering Theory (QRS) for high-order harmonic generation
(HHG) by intense laser pulses is presented. According to the QRS, HHG spectra
can be expressed as a product of a returning electron wave packet and the
photo-recombination differential cross section of the {\em laser-free}
continuum electron back to the initial bound state. We show that the shape of
the returning electron wave packet is determined mostly by the laser only. The
returning electron wave packets can be obtained from the strong-field
approximation or from the solution of the time-dependent Schr\"odinger equation
(TDSE) for a reference atom. The validity of the QRS is carefully examined by
checking against accurate results for both harmonic magnitude and phase from
the solution of the TDSE for atomic targets within the single active electron
approximation. Combining with accurate transition dipoles obtained from
state-of-the-art molecular photoionization calculations, we further show that
available experimental measurements for HHG from partially aligned molecules
can be explained by the QRS. Our results show that quantitative description of
the HHG from aligned molecules has become possible. Since infrared lasers of
pulse durations of a few femtoseconds are easily available in the laboratory,
they may be used for dynamic imaging of a transient molecule with femtosecond
temporal resolutions.Comment: 50 pages, 15 figure
Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers
We studied the photoelectron spectra generated by an intense few-cycle
infrared laser pulse. By focusing on the angular distributions of the back
rescattered high energy photoelectrons, we show that accurate differential
elastic scattering cross sections of the target ion by free electrons can be
extracted. Since the incident direction and the energy of the free electrons
can be easily changed by manipulating the laser's polarization, intensity, and
wavelength, these extracted elastic scattering cross sections, in combination
with more advanced inversion algorithms, may be used to reconstruct the
effective single-scattering potential of the molecule, thus opening up the
possibility of using few-cycle infrared lasers as powerful table-top tools for
imaging chemical and biological transformations, with the desired unprecedented
temporal and spatial resolutions.Comment: 16 pages, 6 figure
First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon
We present the first results of the KMOS Lens-Amplified Spectroscopic Survey
(KLASS), a new ESO Very Large Telescope (VLT) large program, doing multi-object
integral field spectroscopy of galaxies gravitationally lensed behind seven
galaxy clusters selected from the HST Grism Lens-Amplified Survey from Space
(GLASS). Using the power of the cluster magnification we are able to reveal the
kinematic structure of 25 galaxies at , in four
cluster fields, with stellar masses . This sample includes 5 sources at with lower stellar masses
than in any previous kinematic IFU surveys. Our sample displays a diversity in
kinematic structure over this mass and redshift range. The majority of our
kinematically resolved sample is rotationally supported, but with a lower ratio
of rotational velocity to velocity dispersion than in the local universe,
indicating the fraction of dynamically hot disks changes with cosmic time. We
find no galaxies with stellar mass in our sample
display regular ordered rotation. Using the enhanced spatial resolution from
lensing, we resolve a lower number of dispersion dominated systems compared to
field surveys, competitive with findings from surveys using adaptive optics. We
find that the KMOS IFUs recover emission line flux from HST grism-selected
objects more faithfully than slit spectrographs. With artificial slits we
estimate slit spectrographs miss on average 60% of the total flux of emission
lines, which decreases rapidly if the emission line is spatially offset from
the continuum.Comment: Accepted for publication in Ap
Energy End-Use Technologies for the 21st Century. A Report of the World Energy Council
This report makes clear the opportunities and places technology development firmly centre stage in meeting and overcoming the challenges confronting the energy industry and policy makers.
Energy End-Use Technologies for the 21st Century makes it crystal clear that technologies deployed in 20 to 50 years will be the result of policy and funding decisions taken now and that we cannot afford to duck these decisions if we are to meet the World Energy Council’s goals of energy availability, accessibility and acceptability
Hadronic Masses and Regge Trajectories
A comprehensive phenomenological analysis of experimental data and some
theoretical models is presented here (for mesons) to critically discuss how
Regge trajectory parameters depend on flavor. Through analytic continuation of
physical trajectories (obtained from resonance data) into the space like
region, we derive the suppression factor for heavy flavor production. The case
of our D Regge exchange, both for D and production, is considered
in some detail. Good agreement with data is reached confirming that indeed the
slopes of heavier flavors decrease. This result suggests that the confinement
potential has a substantial dependence on the quark masses. In a simple
non-relativistic model, constrained to produce linear Regge trajectories, it is
shown that a linear quark mass dependence is required (in the confinement part
of the potential) in order for the slope to decrease in the appropriate way.Comment: 19 pages, 9 Figures, IV Table
Second wind of the Dulong-Petit Law at a quantum critical point
Renewed interest in 3He physics has been stimulated by experimental
observation of non-Fermi-liquid behavior of dense 3He films at low
temperatures. Abnormal behavior of the specific heat C(T) of two-dimensional
liquid 3He is demonstrated in the occurrence of a T-independent term in C(T).
To uncover the origin of this phenomenon, we have considered the group velocity
of transverse zero sound propagating in a strongly correlated Fermi liquid. For
the first time, it is shown that if two-dimensional liquid 3He is located in
the vicinity of the quantum critical point associated with a divergent
quasiparticle effective mass, the group velocity depends strongly on
temperature and vanishes as T is lowered toward zero. The predicted vigorous
dependence of the group velocity can be detected in experimental measurements
on liquid 3He films. We have demonstrated that the contribution to the specific
heat coming from the boson part of the free energy due to the transverse
zero-sound mode follows the Dulong-Petit Law. In the case of two-dimensional
liquid 3He, the specific heat becomes independent of temperature at some
characteristic temperature of a few mK.Comment: 5 pages, 1 figur
The bright-end galaxy candidates at z ~ 9 from 79 independent HST fields
We present a full data analysis of the pure-parallel Hubble Space Telescope
(HST) imaging observations in the Brightest of Reionizing Galaxies Survey
(BoRG[z9]) in Cycle 22. The medium-deep exposures with five HST/WFC3IR+UVIS
filter bands from 79 independent sightlines (~370 arcmin^2) provide the least
biased determination of number density for z>9 bright galaxies against cosmic
variance. After a strict two-step selection for candidate galaxies, including
dropout color and photometric redshift analyses, and revision of previous BoRG
candidates, we identify one source at z~10 and two sources at z~9. The z~10
candidate shows evidence of line-of-sight lens magnification (mu~1.5), yet it
appears surprisingly luminous (MUV ~ -22.6\pm0.3 mag), making it one of the
brightest candidates at z > 8 known (~ 0.3 mag brighter than the z = 8.68
galaxy EGSY8p7, spectroscopically confirmed by Zitrin and collaborators). For z
~ 9 candidates, we include previous data points at fainter magnitudes and find
that the data are well fitted by a Schechter luminosity function with alpha ~
-2.1, MUV ~ -21.5 mag, and log phi ~ -4.5 Mpc^-3mag^-1, for the first time
without fixing any parameters. The inferred cosmic star formation rate density
is consistent with unaccelerated evolution from lower redshift.Comment: 18pages, 7figures, 6tables. accepted to the Astrophysical Journa
Electron attachment to valence-excited CO
The possibility of electron attachment to the valence state of CO
is examined using an {\it ab initio} bound-state multireference configuration
interaction approach. The resulting resonance has symmetry;
the higher vibrational levels of this resonance state coincide with, or are
nearly coincident with, levels of the parent state. Collisional
relaxation to the lowest vibrational levels in hot plasma situations might
yield the possibility of a long-lived CO state.Comment: Revtex file + postscript file for one figur
- …
