2,749 research outputs found

    Quantitative Rescattering Theory for high-order harmonic generation from molecules

    Get PDF
    The Quantitative Rescattering Theory (QRS) for high-order harmonic generation (HHG) by intense laser pulses is presented. According to the QRS, HHG spectra can be expressed as a product of a returning electron wave packet and the photo-recombination differential cross section of the {\em laser-free} continuum electron back to the initial bound state. We show that the shape of the returning electron wave packet is determined mostly by the laser only. The returning electron wave packets can be obtained from the strong-field approximation or from the solution of the time-dependent Schr\"odinger equation (TDSE) for a reference atom. The validity of the QRS is carefully examined by checking against accurate results for both harmonic magnitude and phase from the solution of the TDSE for atomic targets within the single active electron approximation. Combining with accurate transition dipoles obtained from state-of-the-art molecular photoionization calculations, we further show that available experimental measurements for HHG from partially aligned molecules can be explained by the QRS. Our results show that quantitative description of the HHG from aligned molecules has become possible. Since infrared lasers of pulse durations of a few femtoseconds are easily available in the laboratory, they may be used for dynamic imaging of a transient molecule with femtosecond temporal resolutions.Comment: 50 pages, 15 figure

    Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers

    Get PDF
    We studied the photoelectron spectra generated by an intense few-cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity, and wavelength, these extracted elastic scattering cross sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle infrared lasers as powerful table-top tools for imaging chemical and biological transformations, with the desired unprecedented temporal and spatial resolutions.Comment: 16 pages, 6 figure

    First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon

    Get PDF
    We present the first results of the KMOS Lens-Amplified Spectroscopic Survey (KLASS), a new ESO Very Large Telescope (VLT) large program, doing multi-object integral field spectroscopy of galaxies gravitationally lensed behind seven galaxy clusters selected from the HST Grism Lens-Amplified Survey from Space (GLASS). Using the power of the cluster magnification we are able to reveal the kinematic structure of 25 galaxies at 0.7z2.30.7 \lesssim z \lesssim 2.3, in four cluster fields, with stellar masses 8log(M/M)118 \lesssim \log{(M_\star/M_\odot)} \lesssim 11. This sample includes 5 sources at z>1z>1 with lower stellar masses than in any previous kinematic IFU surveys. Our sample displays a diversity in kinematic structure over this mass and redshift range. The majority of our kinematically resolved sample is rotationally supported, but with a lower ratio of rotational velocity to velocity dispersion than in the local universe, indicating the fraction of dynamically hot disks changes with cosmic time. We find no galaxies with stellar mass <3×109M<3 \times 10^9 M_\odot in our sample display regular ordered rotation. Using the enhanced spatial resolution from lensing, we resolve a lower number of dispersion dominated systems compared to field surveys, competitive with findings from surveys using adaptive optics. We find that the KMOS IFUs recover emission line flux from HST grism-selected objects more faithfully than slit spectrographs. With artificial slits we estimate slit spectrographs miss on average 60% of the total flux of emission lines, which decreases rapidly if the emission line is spatially offset from the continuum.Comment: Accepted for publication in Ap

    Energy End-Use Technologies for the 21st Century. A Report of the World Energy Council

    Get PDF
    This report makes clear the opportunities and places technology development firmly centre stage in meeting and overcoming the challenges confronting the energy industry and policy makers. Energy End-Use Technologies for the 21st Century makes it crystal clear that technologies deployed in 20 to 50 years will be the result of policy and funding decisions taken now and that we cannot afford to duck these decisions if we are to meet the World Energy Council’s goals of energy availability, accessibility and acceptability

    Hadronic Masses and Regge Trajectories

    Get PDF
    A comprehensive phenomenological analysis of experimental data and some theoretical models is presented here (for mesons) to critically discuss how Regge trajectory parameters depend on flavor. Through analytic continuation of physical trajectories (obtained from resonance data) into the space like region, we derive the suppression factor for heavy flavor production. The case of our D Regge exchange, both for D and Λc\Lambda_c production, is considered in some detail. Good agreement with data is reached confirming that indeed the slopes of heavier flavors decrease. This result suggests that the confinement potential has a substantial dependence on the quark masses. In a simple non-relativistic model, constrained to produce linear Regge trajectories, it is shown that a linear quark mass dependence is required (in the confinement part of the potential) in order for the slope to decrease in the appropriate way.Comment: 19 pages, 9 Figures, IV Table

    Second wind of the Dulong-Petit Law at a quantum critical point

    Full text link
    Renewed interest in 3He physics has been stimulated by experimental observation of non-Fermi-liquid behavior of dense 3He films at low temperatures. Abnormal behavior of the specific heat C(T) of two-dimensional liquid 3He is demonstrated in the occurrence of a T-independent term in C(T). To uncover the origin of this phenomenon, we have considered the group velocity of transverse zero sound propagating in a strongly correlated Fermi liquid. For the first time, it is shown that if two-dimensional liquid 3He is located in the vicinity of the quantum critical point associated with a divergent quasiparticle effective mass, the group velocity depends strongly on temperature and vanishes as T is lowered toward zero. The predicted vigorous dependence of the group velocity can be detected in experimental measurements on liquid 3He films. We have demonstrated that the contribution to the specific heat coming from the boson part of the free energy due to the transverse zero-sound mode follows the Dulong-Petit Law. In the case of two-dimensional liquid 3He, the specific heat becomes independent of temperature at some characteristic temperature of a few mK.Comment: 5 pages, 1 figur

    The bright-end galaxy candidates at z ~ 9 from 79 independent HST fields

    Get PDF
    We present a full data analysis of the pure-parallel Hubble Space Telescope (HST) imaging observations in the Brightest of Reionizing Galaxies Survey (BoRG[z9]) in Cycle 22. The medium-deep exposures with five HST/WFC3IR+UVIS filter bands from 79 independent sightlines (~370 arcmin^2) provide the least biased determination of number density for z>9 bright galaxies against cosmic variance. After a strict two-step selection for candidate galaxies, including dropout color and photometric redshift analyses, and revision of previous BoRG candidates, we identify one source at z~10 and two sources at z~9. The z~10 candidate shows evidence of line-of-sight lens magnification (mu~1.5), yet it appears surprisingly luminous (MUV ~ -22.6\pm0.3 mag), making it one of the brightest candidates at z > 8 known (~ 0.3 mag brighter than the z = 8.68 galaxy EGSY8p7, spectroscopically confirmed by Zitrin and collaborators). For z ~ 9 candidates, we include previous data points at fainter magnitudes and find that the data are well fitted by a Schechter luminosity function with alpha ~ -2.1, MUV ~ -21.5 mag, and log phi ~ -4.5 Mpc^-3mag^-1, for the first time without fixing any parameters. The inferred cosmic star formation rate density is consistent with unaccelerated evolution from lower redshift.Comment: 18pages, 7figures, 6tables. accepted to the Astrophysical Journa

    Electron attachment to valence-excited CO

    Get PDF
    The possibility of electron attachment to the valence 3Π^{3}\Pi state of CO is examined using an {\it ab initio} bound-state multireference configuration interaction approach. The resulting resonance has 4Σ^{4}\Sigma^{-} symmetry; the higher vibrational levels of this resonance state coincide with, or are nearly coincident with, levels of the parent a3Πa^{3}\Pi state. Collisional relaxation to the lowest vibrational levels in hot plasma situations might yield the possibility of a long-lived CO^- state.Comment: Revtex file + postscript file for one figur
    corecore