275 research outputs found

    Del «rinovellare» la lingua volgare. I «Salmi» di Bernardo Tasso

    Get PDF
    All’interno del più ampio genere della poesia religiosa del ’500, le parafrasi e le riscritture salmiche rivestono un ruolo paradigmatico: sia perché si collocano a ridosso del divieto dell’Inquisizione di tradurre e parafrasare il testo biblico; sia perché la natura melica della poesia davidica apriva nuove possibilità tematiche e ritmico-espressive rispetto al canone petrarchesco; e infine perché i Salmi furono il testo capitale della liturgia calvinista e luterana. I Salmi di Bernardo Tasso (Venezia, Giolito, 1560) si inseriscono certamente entro lo sperimentalismo metrico avviato dall’autore già con i libri De gli amori, negli anni ’30; ma è verosimile ipotizzare che la scelta dell’argomento spirituale andasse nella direzione di espandere l’orizzonte lirico volgare oltre il tema amoroso petrarchesco e oltre l’imitazione classica, verso nuovi orizzonti tematico-espressivi

    Younis Tawfik. Confini e passaggi

    Get PDF
    Breve attraversamento dell'opera in prosa dell'autore di origini irachene Younis Tafwi

    Il romanzo tra letteratura-mondo e global novel

    Get PDF
    Lo studio si interroga sullo statuto del romanzo contemporaneo, alla luce delle ibridazioni e delle polifonie aperte dalla Letteratura-mondo. Dopo una prima introduzione metodologica, volta a definire il romanzo all’interno del nuovo orizzonte teorico aperto dai postcolonial studies, si tenta di porre una prima linea di demarcazione tra il romanzo-mondo e il global novel, prendendo in considerazione la lingua, il cronotopo romanzesco e la presenza o meno di un luogo che esprima la sua memoria e la sua cultura entro le piaghe del testo. In rapporto a quest’ultimo aspetto, ci si chiede quali caratteri narrativi permettano, oggi, di definire un romanzo ‘epico’ e se in questo sottogenere possano rientrare alcuni romanzi di autori translingue italiani e/o le opere della «New Italian Epic»

    Effects of preplasma scale length and laser intensity on the divergence of laser-generated hot electrons.

    Get PDF
    We report on a numerical study of the effects of preplasma scale length and laser intensity on the hot-electron (≥1 MeV) divergence angle using full-scale 2D3V (two dimensional in space, three dimensional in velocity) simulations including a self-consistent laser-plasma interaction and photoionization using the particle-in-cell code LSP. Our simulations show that the fast-electron divergence angle increases approximately linearly with the preplasma scale length for a fixed laser intensity. On the other hand, for a fixed preplasma scale length, the laser intensity has little effect on the divergence angle in the range between 10(18) and 10(21) W/cm(2). These findings have important implications for the interpretation of experimental results

    Effect of target material on fast-electron transport and resistive collimation.

    Get PDF
    The effect of target material on fast-electron transport is investigated using a high-intensity (0.7 ps, 1020  W/cm2{10}^{20}\text{ }\text{ }\mathrm{W}/{\mathrm{cm}}^{2}) laser pulse irradiated on multilayered solid Al targets with embedded transport (Au, Mo, Al) and tracer (Cu) layers, backed with millimeter-thick carbon foils to minimize refluxing. We consistently observed a more collimated electron beam (36% average reduction in fast-electron induced Cu K\ensuremath{\alpha} spot size) using a high- or mid-ZZ (Au or Mo) layer compared to Al. All targets showed a similar electron flux level in the central spot of the beam. Two-dimensional collisional particle-in-cell simulations showed formation of strong self-generated resistive magnetic fields in targets with a high-ZZ transport layer that suppressed the fast-electron beam divergence; the consequent magnetic channels guided the fast electrons to a smaller spot, in good agreement with experiments. These findings indicate that fast-electron transport can be controlled by self-generated resistive magnetic fields and may have important implications to fast ignition

    Stop-event-related potentials from intracranial electrodes reveal a key role of premotor and motor cortices in stopping ongoing movements

    Get PDF
    In humans, the ability to withhold manual motor responses seems to rely on a right-lateralized frontal–basal ganglia–thalamic network, including the pre-supplementary motor area and the inferior frontal gyrus (IFG). These areas should drive subthalamic nuclei to implement movement inhibition via the hyperdirect pathway. The output of this network is expected to influence those cortical areas underlying limb movement preparation and initiation, i.e., premotor (PMA) and primary motor (M1) cortices. Electroencephalographic (EEG) studies have shown an enhancement of the N200/P300 complex in the event-related potentials (ERPs) when a planned reaching movement is successfully stopped after the presentation of an infrequent stop-signal. PMA and M1 have been suggested as possible neural sources of this ERP complex but, due to the limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients performing a reaching version of the countermanding task while undergoing presurgical monitoring. We consistently found a stereotyped ERP complex on a single-trial level when a movement was successfully cancelled. These ERPs were selectively expressed in M1, PMA, and Brodmann's area (BA) 9 and their onsets preceded the end of the stop process, suggesting a causal involvement in this executive function. Such ERPs also occurred in unsuccessful-stop (US) trials, that is, when subjects moved despite the occurrence of a stop-signal, mostly when they had long reaction times (RTs). These findings support the hypothesis that motor cortices are the final target of the inhibitory command elaborated by the frontal–basal ganglia–thalamic network

    Frontal Functional Connectivity of Electrocorticographic Delta and Theta Rhythms during Action Execution Versus Action Observation in Humans

    Get PDF
    We have previously shown that in seven drug-resistant epilepsy patients, both reaching-grasping of objects and the mere observation of those actions did desynchronize subdural electrocorticographic (ECoG) alpha (8–13 Hz) and beta (14–30) rhythms as a sign of cortical activation in primary somatosensory-motor, lateral premotor and ventral prefrontal areas (Babiloni et al., 2016a). Furthermore, that desynchronization was greater during action execution than during its observation. In the present exploratory study, we reanalyzed those ECoG data to evaluate the proof-of-concept that lagged linear connectivity (LLC) between primary somatosensory-motor, lateral premotor and ventral prefrontal areas would be enhanced during the action execution compared to the mere observation due to a greater flow of visual and somatomotor information. Results showed that the delta-theta (<8 Hz) LLC between lateral premotor and ventral prefrontal areas was higher during action execution than during action observation. Furthermore, the phase of these delta-theta rhythms entrained the local event-related connectivity of alpha and beta rhythms. It was speculated the existence of a multi-oscillatory functional network between high-order frontal motor areas which should be more involved during the actual reaching-grasping of objects compared to its mere observation. Future studies in a larger population should cross-validate these preliminary results

    Antifungal susceptibility of invasive yeast isolates in Italy: the GISIA3 study in critically ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yeasts are a common cause of invasive fungal infections in critically ill patients. Antifungal susceptibility testing results of clinically significant fungal strains are of interest to physicians, enabling them to adopt appropriate strategies for empiric and prophylactic therapies. We investigated the antifungal susceptibility of yeasts isolated over a 2-year period from hospitalised patients with invasive yeast infections.</p> <p>Methods</p> <p>638 yeasts were isolated from the blood, central venous catheters and sterile fluids of 578 patients on general and surgical intensive care units and surgical wards. Etest strips and Sensititre panels were used to test the susceptibility of the isolates to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole, posaconazole and voriconazole in 13 laboratories centres (LC) and two co-ordinating centres (CC). The Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution method was used at the CCs for comparison.</p> <p>Results</p> <p>Etest and Sensititre (LC/CC) MIC<sub>90 </sub>values were, respectively: amphotericin B 0.5/0.38, 1/1 mg/L; anidulafungin 2/1.5 and 1/1 mg/L; caspofungin 1/0.75 and 0.5/0.5 mg/L; fluconazole 12/8 and 16/16 mg/L; itraconazole 1/1.5, 0.5/0.5 mg/L; posaconazole 0.5 mg/L and voriconazole 0.25 mg/L for all. The overall MIC<sub>90 </sub>values were influenced by the reduced susceptibility of <it>Candida parapsilosis </it>isolates to echinocandins and a reduced or lack of susceptibility of <it>Candida glabrata </it>and <it>Candida krusei </it>to azoles, in particular fluconazole and itraconazole. Comparison of the LC and CC results showed good Essential Agreement (90.3% for Etest and 92.9% for Sensititre), and even higher Categorical Agreement (93.9% for Etest and 96% for Sensititre); differences were observed according to the species, method, and antifungal drug. No cross-resistance between echinocandins and triazoles was detected.</p> <p>Conclusions</p> <p>Our data confirm the different antifungal susceptibility patterns among species, and highlight the need to perform antifungal susceptibility testing of clinically relevant yeasts. With the exception of a few species (e.g. <it>C. glabrata </it>for azoles and <it>C. parapsilosis </it>for echinocandins), the findings of our study suggest that two of the most widely used commercial methods (Etest and Sensititre) provide valid and reproducible results.</p

    Time-of-flight methodologies with large-area diamond detectors for the effectively characterization of tens MeV protons

    Get PDF
    A novel detector based on a polycrystalline diamond sensor is here employed in an advanced time-of-flight scheme for the characterization of energetic ions accelerated during laser-matter interactions. The optimization of the detector and of the advanced TOF methodology allow to obtain signals characterized by high signal-to-noise ratio and high dynamic range even in the most challenging experimental environments, where the interaction of high-intensity laser pulses with matter leads to effective ion acceleration, but also to the generation of strong Electromagnetic Pulses (EMPs) with intensities up to the MV/m order. These are known to be a serious threat for the fielded diagnostic systems. In this paper we report on the measurement performed with the PW-class laser system Vega 3 at CLPU (30 J energy, 1021 W/cm2 intensity, 30 fs pulses) irradiating solid targets, where both tens of MeV ions and intense EMP fields were generated. The data were analyzed to retrieve a calibrated proton spectrum and in particular we focus on the analysis of the most energetic portion (E &gt; 5.8 MeV) of the spectrum showing a procedure to deal with the intrinsic lower sensitivity of the detector in the mentioned spectral-range
    corecore