115 research outputs found

    Regulation of cardiovascular connexins by mechanical forces and junctions

    Get PDF
    Connexins form a family of transmembrane proteins that consists of 20 members in humans and 21 members in mice. Six connexins assemble into a connexon that can function as a hemichannel or connexon that can dock to a connexon expressed by a neighbouring cell, thereby forming a gap junction channel. Such intercellular channels synchronize responses in multicellular organisms through direct exchange of ions, small metabolites, and other second messenger molecules between the cytoplasms of adjacent cells. Multiple connexins are expressed in the cardiovascular system. These connexins not only experience the different biomechanical forces within this system, but may also act as effector proteins in co-ordinating responses within groups of cells towards these forces. This review discusses recent insights regarding regulation of cardiovascular connexins by mechanical forces and junctions. It specifically addresses effects of (i) shear stress on endothelial connexins, (ii) hypertension on vascular connexins, and (iii) changes in afterload and the composition of myocardial mechanical junctions on cardiac connexin

    Calcitonin Gene-Related Peptide Selectively Relaxes Contractile Responses to Endothelin-1 in Rat Mesenteric Resistance Arteries □ S

    Get PDF
    ABSTRACT We tested the hypothesis that endothelin-1 (ET-1) modulates sensory-motor nervous arterial relaxation by prejunctional and postjunctional mechanisms. Isolated rat mesenteric resistance arteries were investigated with immunohistochemistry, wiremyography, and pharmacological tools. ET A -and ET B -receptors could be visualized on the endothelium and smooth muscle and on periarterial fibers containing calcitonin gene-related peptide (CGRP). Arterial contractile responses to ET-1 (0.25-16 nM) were not modified by blockade of ET B -receptors, NOsynthase, and cyclooxygenase or desensitization of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) with capsaicin. ET-1 reversed relaxing responses to CGRP in depolarized arteries. This effect was inhibited by ET Aantagonists. It was not selective because ET-1 also reversed relaxing responses to Na-nitroprusside (SNP) and because phenylephrine (PHE; 0.25-16 M) similarly reversed relaxing responses to CGRP or SNP. Conversely, contractile responses to ET-1 were, compared with PHE, hypersensitive to the relaxing effects of the TRPV1-agonist capsaicin and to exogenous CGRP, but not to acetylcholine, forskolin, pinacidil, or SNP. In conclusion, ET-1 does not stimulate sensory-motor nervous arterial relaxation, but ET A -mediated arterial contractions are selectively sensitive to relaxation by the sensory neurotransmitter CGRP. This does not involve NO, cAMP, or ATP-sensitive K ϩ channels

    In vivo mapping of vascular inflammation using the translocator protein tracer 18F-FEDAA1106

    Get PDF
    YesNon-invasive imaging methods are required to monitor the inflammatory content of atherosclerotic plaques. FEDAA1106 (N-(5-fluoro-2-phenoxyphenyl)-N-(2-(2-fluoroethoxy)-5- methoxybenzyl) acetamide) is a selective ligand for TSPO-18kDa (also known as peripheral benzodiazepine receptor), which is expressed by activated macrophages. We compared 18F- FEDAA1106 and 18F-FDG (a marker of glucose metabolism) for PET imaging of vascular inflammation. This was tested using a murine model where focal inflammation was induced in the carotid artery via placement of a constrictive cuff. Immunostaining revealed CD68-positive cells (macrophages) at a disturbed flow site located downstream from the cuff. Dynamic PET imaging using 18F-FEDAA1106 or 18F-FDG was registered to anatomical data generated by CT/CT angiography. Standardized uptake values (SUV) were significantly increased at cuffed compared to contralateral arteries using either 18F-FEDAA1106 (p<0.01) or FDG (p<0.05). However, the 18F-FEDAA1106 signal was significantly higher at the inflamed disturbed flow region compared to the non-inflamed uniform flow regions, whereas differences in FDG uptake were less distinct. We conclude that 18F-FEDAA1106 can be used in vivo for detection of vascular inflammation. Moreover, the signal pattern of 18F-FEDAA1106 correlated with vascular inflammation more specifically than FDG uptake.: This study was funded by the British Heart Foundation and through a grant from the Swiss National Science Foundation (310030_143343/1 to B.R.K.

    Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    Get PDF
    Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism.-receptor complexes.-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1

    Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral ischemia results in a rapid increase in contractile cerebrovascular receptors, such as the 5-hydroxytryptamine type 1B (5-HT<sub>1B</sub>), angiotensin II type 1 (AT<sub>1</sub>), and endothelin type B (ET<sub>B</sub>) receptors, in the vessel walls within the ischemic region, which further impairs local blood flow and aggravates tissue damage. This receptor upregulation occurs via activation of the mitogen-activated protein kinase pathway. We therefore hypothesized an important role for B-Raf, the first signaling molecule in the pathway. To test our hypothesis, human cerebral arteries were incubated at 37°C for 48 h in the absence or presence of a B-Raf inhibitor: SB-386023 or SB-590885. Contractile properties were evaluated in a myograph and protein expression of the individual receptors and activated phosphorylated B-Raf (p-B-Raf) was evaluated immunohistochemically.</p> <p>Results</p> <p>5-HT<sub>1B</sub>, AT<sub>1</sub>, and ET<sub>B </sub>receptor-mediated contractions were significantly reduced by application of SB-590885, and to a smaller extent by SB-386023. A marked reduction in AT<sub>1 </sub>receptor immunoreactivity was observed after treatment with SB-590885. Treatment with SB-590885 and SB-386023 diminished the culture-induced increase of p-B-Raf immunoreactivity.</p> <p>Conclusions</p> <p>B-Raf signaling has a key function in the altered expression of vascular contractile receptors observed after organ culture. Therefore, specific targeting of B-Raf might be a novel approach to reduce tissue damage after cerebral ischemia by preventing the previously observed upregulation of contractile receptors in smooth muscle cells.</p

    Antihypertensive Treatment Differentially Affects Vascular Sphingolipid Biology in Spontaneously Hypertensive Rats

    Get PDF
    We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A2, cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A2. This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. Methods and Findings For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20–25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A2. The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. Conclusion In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions

    Impaired flow-induced arterial remodeling in DOCA-salt hypertensive rats

    Get PDF
    Arteries from young healthy animals respond to chronic changes in blood flow and blood pressure by structural remodeling. We tested whether the ability to respond to decreased (-90%) or increased (+100%) blood flow is impaired during the development of deoxycorticosterone acetate (DOCA)-salt hypertension in rats, a model for an upregulated endothelin-1 system. Mesenteric small arteries (MrA) were exposed to low blood flow (LF) or high blood flow (HF) for 4 or 7 weeks. The bioavailability of vasoactive peptides was modified by chronic treatment of the rats with the dual neutral endopeptidase (NEP)/endothelin-converting enzyme (ECE) inhibitor SOL1. After 3 or 6 weeks of hypertension, the MrA showed hypertrophic arterial remodeling (3 weeks: media cross-sectional area (mCSA): 10 +/- 1 x 10(3) to 17 +/- 2 x 10(3) mu m(2); 6 weeks: 13 +/- 2 x 10(3) to 24 +/- 3 x 10(3) mu m(2)). After 3, but not 6, weeks of hypertension, the arterial diameter was increased (empty set: 385 +/- 13 to 463 +/- 14 mu m). SOL1 reduced hypertrophy after 3 weeks of hypertension (mCSA: 6 x 10(3) +/- 1 x 10(3) mu m(2)). The diameter of the HF arteries of normotensive rats increased (empty set: 463 +/- 22 mu m) but no expansion occurred in the HF arteries of hypertensive rats (empty set: 471 +/- 16 mu m). MrA from SOL1-treated hypertensive rats did show a significant diameter increase (empty set: 419 +/- 13 to 475 +/- 16 mu m). Arteries exposed to LF showed inward remodeling in normotensive and hypertensive rats (mean empty set between 235 and 290 mu m), and infiltration of monocyte/ macrophages. SOL1 treatment did not affect the arterial diameter of LF arteries but reduced the infiltration of monocyte/ macrophages. We show for the first time that flow-induced remodeling is impaired during the development of DOCA-salt hypertension and that this can be prevented by chronic NEP/ECE inhibition. Hypertension Research (2012) 35, 1093-1101; doi:10.1038/hr.2012.94; published online 12 July 201

    Democratic Education: A Theoretical Review (2006–2017)

    Get PDF
    This theoretical review examines how democratic education is conceptualized within educational scholarship. Three hundred and seventy-seven articles published in English language peer-reviewed journals between 2006 and 2017 are discursively analyzed. Democratic education functions as a privileged nodal point of different political discourses. Two discourses against (elitist and neoliberal) and six discourses pro democratic education (liberal, deliberative, multiculturalist, participatory, critical, and agonistic) construct its meaning. It is argued that the different versions of democratic education respond to various (a) ontological and epistemological assumptions, (b) normative approaches to democracy, and (c) conceptions of the relationship between education and politics. For educational policy, the review provides a critique of elitist and neoliberal policies and support for participatory decision making across discourses. Recommendations for educational practice are made by identifying pedagogies across democratic education scholarship as well as specific pedagogies for each discourse

    Meens, David, and Kenneth R. Howe, NCLB and Its Wake: Bad News for Democracy. Teachers College Record, 117(No.6, 2015), 1-44.

    No full text
    Examines the eclipse of local control through NCLB; relates democratic policy-making theory to the circumstances of NCLB and shows how NCLB undermines teaching children meaningful participation in democratic politics; offers a set of guidelines for assessing future federal education policies in terms of democratic principles; related articles and critiques follow this article
    corecore