360 research outputs found

    Association between urinary metabolic profile and the intestinal effects of cocoa in rats

    Get PDF
    The aim of this study was to elucidate the relationship between the urinary metabolic fingerprint and the effects of cocoa and cocoa fibre on body weight, hormone metabolism, intestinal immunity and microbiota composition. To this effect, Wistar rats were fed, for 3 weeks, a diet containing 10 % cocoa (C10) or two other diets with same the proportion of fibres: one based on cocoa fibre (CF) and another containing inulin as a reference (REF) diet. The rats' 24 h urine samples were analysed by an untargeted 1H NMR spectroscopy-based metabonomic approach. Concentrations of faecal IgA and plasma metabolic hormones were also quantified. The C10 diet decreased the intestinal IgA, plasma glucagon-like peptide-1 and glucagon concentrations and increased ghrelin levels compared with those in the REF group. Clear differences were observed between the metabolic profiles from the C10 group and those from the CF group. Urine metabolites derived from cocoa correlated with the cocoa effects on body weight, immunity and the gut microbiota. Overall, cocoa intake alters the host and bacterial metabolism concerning energy and amino acid pathways, leading to a metabolic signature that can be used as a marker for consumption. This metabolic profile correlates with body weight, metabolic hormones, intestinal immunity and microbiota composition.</p

    Association between urinary metabolic profile and the intestinal effects of cocoa in rats

    Get PDF
    The aim of this study was to elucidate the relationship between the urinary metabolic fingerprint and the effects of cocoa and cocoa fibre on body weight, hormone metabolism, intestinal immunity and microbiota composition. To this effect, Wistar rats were fed, for 3 weeks, a diet containing 10% cocoa (C10) or two other diets with same the proportion of fibres: one based on cocoa fibre (CF) and another containing inulin as a reference (REF) diet. The rats' 24 h urine samples were analysed by an untargeted 1H NMR spectroscopy-based metabonomic approach. Concentrations of faecal IgA and plasma metabolic hormones were also quantified. The C10 diet decreased the intestinal IgA, plasma glucagon-like peptide-1 and glucagon concentrations and increased ghrelin levels compared with those in the REF group. Clear differences were observed between the metabolic profiles from the C10 group and those from the CF group. Urine metabolites derived from cocoa correlated with the cocoa effects on body weight, immunity and the gut microbiota. Overall, cocoa intake alters the host and bacterial metabolism concerning energy and amino acid pathways, leading to a metabolic signature that can be used as a marker for consumption. This metabolic profile correlates with body weight, metabolic hormones, intestinal immunity and microbiota composition

    Efficiency of Energy Conversion in Thermoelectric Nanojunctions

    Full text link
    Using first-principles approaches, this study investigated the efficiency of energy conversion in nanojunctions, described by the thermoelectric figure of merit ZTZT. We obtained the qualitative and quantitative descriptions for the dependence of ZTZT on temperatures and lengths. A characteristic temperature: T0=ÎČ/Îł(l)T_{0}= \sqrt{\beta/\gamma(l)} was observed. When Tâ‰ȘT0T\ll T_{0}, ZT∝T2ZT\propto T^{2}. When T≫T0T\gg T_{0}, ZTZT tends to a saturation value. The dependence of ZTZT on the wire length for the metallic atomic chains is opposite to that for the insulating molecules: for aluminum atomic (conducting) wires, the saturation value of ZTZT increases as the length increases; while for alkanethiol (insulating) chains, the saturation value of ZTZT decreases as the length increases. ZTZT can also be enhanced by choosing low-elasticity bridging materials or creating poor thermal contacts in nanojunctions. The results of this study may be of interest to research attempting to increase the efficiency of energy conversion in nano thermoelectric devices.Comment: 2 figure

    Effect of Thermoelectric Cooling in Nanoscale Junctions

    Full text link
    We propose a thermoelectric cooling device based on an atomic-sized junction. Using first-principles approaches, we investigate the working conditions and the coefficient of performance (COP) of an atomic-scale electronic refrigerator where the effects of phonon's thermal current and local heating are included. It is observed that the functioning of the thermoelectric nano-refrigerator is restricted to a narrow range of driving voltages. Compared with the bulk thermoelectric system with the overwhelmingly irreversible Joule heating, the 4-Al atomic refrigerator has a higher efficiency than a bulk thermoelectric refrigerator with the same ZTZT due to suppressed local heating via the quasi-ballistic electron transport and small driving voltages. Quantum nature due to the size minimization offered by atomic-level control of properties facilitates electron cooling beyond the expectation of the conventional thermoelectric device theory.Comment: 8 figure

    Structural versus Electrical Functionalization of Oligo(phenyleneethynylene) Diamine Molecular Junctions

    Get PDF
    We explore both experimentally and theoretically the conductance and packing of molecular junctions based on oligo(phenyleneethynylene) (OPE) diamine wires, when a series of functional groups are incorporated into the wires. Using the scanning tunnelling microscopy break-junction (STM BJ) technique, we study these compounds in two environments (air and 1,2,4-trichlorobenzene) and explore different starting molecular concentrations. We show that the electrical conductance of the molecular junctions exhibits variations among different compounds, which are significant at standard concentrations but become unimportant when working at a low enough concentration. This shows that the main effect of the functional groups is to affect the packing of the molecular wires, rather than to modify their electrical properties. Our theoretical calculations consistently predict no significant changes in the conductance of the wires due to the electronic structure of the functional groups, although their ability to hinder ring rotations within the OPE backbone can lead to higher conductances at higher packing densities

    Partitioning the Proteome: Phase Separation for Targeted Analysis of Membrane Proteins in Human Post-Mortem Brain

    Get PDF
    Neuroproteomics is a powerful platform for targeted and hypothesis driven research, providing comprehensive insights into cellular and sub-cellular disease states, Gene × Environmental effects, and cellular response to medication effects in human, animal, and cell culture models. Analysis of sub-proteomes is becoming increasingly important in clinical proteomics, enriching for otherwise undetectable proteins that are possible markers for disease. Membrane proteins are one such sub-proteome class that merit in-depth targeted analysis, particularly in psychiatric disorders. As membrane proteins are notoriously difficult to analyse using traditional proteomics methods, we evaluate a paradigm to enrich for and study membrane proteins from human post-mortem brain tissue. This is the first study to extensively characterise the integral trans-membrane spanning proteins present in human brain. Using Triton X-114 phase separation and LC-MS/MS analysis, we enriched for and identified 494 membrane proteins, with 194 trans-membrane helices present, ranging from 1 to 21 helices per protein. Isolated proteins included glutamate receptors, G proteins, voltage gated and calcium channels, synaptic proteins, and myelin proteins, all of which warrant quantitative proteomic investigation in psychiatric and neurological disorders. Overall, our sub-proteome analysis reduced sample complexity and enriched for integral membrane proteins by 2.3 fold, thus allowing for more manageable, reproducible, and targeted proteomics in case vs. control biomarker studies. This study provides a valuable reference for future neuroproteomic investigations of membrane proteins, and validates the use Triton X-114 detergent phase extraction on human post mortem brain

    The terrestrial biosphere model farm

    Get PDF
    Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ-GUESS, ORCHIDEE, SiB-3, and SiB-CASA. All models were wrapped in a software framework driven with common forcing data, spin-up, and run protocols specified by the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901–2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open-source, cloud-based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges
    • 

    corecore