7,030 research outputs found

    No classical limit of quantum decay for broad states

    Full text link
    Though the classical treatment of spontaneous decay leads to an exponential decay law, it is well known that this is an approximation of the quantum mechanical result which is a non-exponential at very small and large times for narrow states. The non exponential nature at large times is however hard to establish from experiments. A method to recover the time evolution of unstable states from a parametrization of the amplitude fitted to data is presented. We apply the method to a realistic example of a very broad state, the sigma meson and reveal that an exponential decay is not a valid approximation at any time for this state. This example derived from experiment, shows the unique nature of broad resonances

    Heme biosynthesis in Friend erythroleukemia cells: control by ferrochelatase.

    Full text link

    Hermitian Young Operators

    Full text link
    Starting from conventional Young operators we construct Hermitian operators which project orthogonally onto irreducible representations of the (special) unitary group.Comment: 15 page

    Valuing conservation benefits of disease control in wildlife: A choice experiment approach to bovine tuberculosis management in New Zealand's native forests

    Get PDF
    We assess the non-monetary environmental benefits that accrue incidentally in New Zealand (NZ) from pest management conducted primarily to control an animal disease, bovine tuberculosis (TB). TB is an infectious disease that is one of the world's most serious animal health problems and, in many parts of the developing world, still a major mortality risk for humans. The incidence of TB in New Zealand (NZ) farmed livestock has been reduced progressively over the last 20 years, largely due to extensive and sustained population control of the main wildlife reservoir of disease, the introduced brushtail possum. Possums are also major pests that threaten indigenous forest biodiversity, and so extensive possum control for TB mitigation also incidental benefits conservation, but the extent and public value of this benefit has yet to be quantified. We conducted a choice experiment survey of the NZ public in an effort to value the native forest biodiversity benefits of TB-related possum control. We find strong public support for conservation outcomes consequent to TB-possum control in public native forests. The public place substantial value on the most observable biodiversity benefits of TB possum control, such as improved forest canopies and presence of native birds. The benefits, costs and values of TB-possum control are discussed in relation to the future directives of NZ's TB control programme, which is headed toward first regional and then national level disease eradication

    Experimental evidence of antiproton reflection by a solid surface

    Full text link
    We report here experimental evidence of the reflection of a large fraction of a beam of low energy antiprotons by an aluminum wall. This derives from the analysis of a set of annihilations of antiprotons that come to rest in rarefied helium gas after hitting the end wall of the apparatus. A Monte Carlo simulation of the antiproton path in aluminum indicates that the observed reflection occurs primarily via a multiple Rutherford-style scattering on Al nuclei, at least in the energy range 1-10 keV where the phenomenon is most visible in the analyzed data. These results contradict the common belief according to which the interactions between matter and antimatter are dominated by the reciprocally destructive phenomenon of annihilation.Comment: 5 pages with 5 figure

    Observing the spin of a free electron

    Get PDF
    Long ago, Bohr, Pauli, and Mott argued that it is not, in principle, possible to measure the spin components of a free electron. One can try to use a Stern-Gerlach type of device, but the finite size of the beam results in an uncertainty of the splitting force that is comparable with the gradient force. The result is that no definite spin measurement can be made. Recently there has been a revival of interest in this problem, and we will present our own analysis and quantum-mechanical wave-packet calculations which suggest that a spin measurement is possible for a careful choice of initial conditions

    Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle

    Get PDF
    The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented

    Folding model analysis of alpha radioactivity

    Full text link
    Radioactive decay of nuclei via emission of α\alpha particles has been studied theoretically in the framework of a superasymmetric fission model using the double folding (DF) procedure for obtaining the α\alpha-nucleus interaction potential. The DF nuclear potential has been obtained by folding in the density distribution functions of the α\alpha nucleus and the daughter nucleus with a realistic effective interaction. The M3Y effective interaction has been used for calculating the nuclear interaction potential which has been supplemented by a zero-range pseudo-potential for exchange along with the density dependence. The nuclear microscopic α\alpha-nucleus potential thus obtained has been used along with the Coulomb interaction potential to calculate the action integral within the WKB approximation. This subsequently yields microscopic calculations for the half lives of α\alpha decays of nuclei. The density dependence and the exchange effects have not been found to be very significant. These calculations provide reasonable estimates for the lifetimes of α\alpha radioactivity of nuclei.Comment: 7 pages including 1 figur
    corecore