34 research outputs found

    Selection before backcross during exotic germplasm introgression

    Get PDF
    Introgression of genes from exotic germplasm into breeding populations can broaden the genetic base of crop improvement. Only a very small percentage of genetic variability has been used in crop breeding programs. Traditionally, F1 plants are used to backcross to the adapted lines or populations. An alternative approach is to backcross the F2 individuals selected for agronomic acceptability. Our objective was to determine whether selection before backcross would lead to more progenies with both high yield and acceptable levels of agronomic performance than direct backcross without selection. To test the feasibility of the proposed approach, we conducted parallel experiments in which two exotic sorghum accessions were crossed to two adapted sorghum parents and further backcrossing was conducted with either F1 or selected F2 plants. Fifty random S1 families were evaluated in three test environments. Although selection before backcross resulted in a higher frequency of families with maturity equal to or earlier than those of the adapted parents, no consistent changes in grain yield and plant height were observed between populations with and without selection. Similar results were found with either an inbred or a population as the recurrent parents. Given these findings and the extra generation required, we do not recommend selection before backcross in the process of introgression of exotic germplasm

    Biosafety education relevant to genetically engineered crops for academic and non-academic stakeholders in East Africa

    Get PDF
    Development and deployment of genetically engineered crops requires effective environmental and food safety assessment capacity. In-country expertise is needed to make locally appropriate decisions. In April 2007, biosafety and biotechnology scientists, regulators, educators, and communicators from Kenya, Tanzania, and Uganda, met to examine the status and needs of biosafety training and educational programs in East Africa. Workshop participants emphasized the importance of developing biosafety capacity within their countries and regionally. Key recommendations included identification of key biosafety curricular components for university students; collaboration among institutions and countries; development of informational materials for non-academic stakeholders and media; and organization of study tours for decision makers. It was emphasized that biosafety knowledge is important for all aspects of environmental health, food safety, and human and animal hygiene. Thus, development of biosafety expertise, policies and procedures can be a stepping stone to facilitate improved biosafety for all aspects of society and the environment

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus in the African Great Lakes region

    Get PDF
    Abstract Background The ixodid tick Rhipicephalus appendiculatus is the main vector of Theileria parva, wich causes the highly fatal cattle disease East Coast fever (ECF) in sub-Saharan Africa. Rhipicephalus appendiculatus populations differ in their ecology, diapause behaviour and vector competence. Thus, their expansion in new areas may change the genetic structure and consequently affect the vector-pathogen system and disease outcomes. In this study we investigated the genetic distribution of R. appendiculatus across agro-ecological zones (AEZs) in the African Great Lakes region to better understand the epidemiology of ECF and elucidate R. appendiculatus evolutionary history and biogeographical colonization in Africa. Methods Sequencing was performed on two mitochondrial genes (cox1 and 12S rRNA) of 218 ticks collected from cattle across six AEZs along an altitudinal gradient in the Democratic Republic of Congo, Rwanda, Burundi and Tanzania. Phylogenetic relationships between tick populations were determined and evolutionary population dynamics models were assessed by mismach distribution. Results Population genetic analysis yielded 22 cox1 and 9 12S haplotypes in a total of 209 and 126 nucleotide sequences, respectively. Phylogenetic algorithms grouped these haplotypes for both genes into two major clades (lineages A and B). We observed significant genetic variation segregating the two lineages and low structure among populations with high degree of migration. The observed high gene flow indicates population admixture between AEZs. However, reduced number of migrants was observed between lowlands and highlands. Mismatch analysis detected a signature of rapid demographic and range expansion of lineage A. The star-like pattern of isolated and published haplotypes indicates that the two lineages evolve independently and have been subjected to expansion across Africa. Conclusions Two sympatric R. appendiculatus lineages occur in the Great Lakes region. Lineage A, the most diverse and ubiquitous, has experienced rapid population growth and range expansion in all AEZs probably through cattle movement, whereas lineage B, the less abundant, has probably established a founder population from recent colonization events and its occurrence decreases with altitude. These two lineages are sympatric in central and eastern Africa and allopatric in southern Africa. The observed colonization pattern may strongly affect the transmission system and may explain ECF endemic instability in the tick distribution fringes

    Experimental evaluation of inactivated and live attenuated vaccines against Mycoplasma mycoides subsp. Mycoides

    No full text
    The current control method for contagious bovine pleuropneumonia (CBPP) in Africa is vaccination with a live, attenuated strain of Mycoplasma mycoides subsp. mycoides(Mmm). However, this method is not very efficient and often causes serious adverse reactions. Several studies have attempted to induce protection using inactivated mycoplasma, but with widely contradictory results. Therefore, we compared the protective capacity of the live T1/44 vaccine with two inactivated preparations of Mmmstrain Afadé, inoculated with an adjuvant. Protection was measured after a challenge with Afadé. The protection levels were 31%, 80.8% and 74.1% for the formalin-inactivated, heat-inactivated and live attenuated preparations, respectively. These findings indicate that low doses of heat-inactivated Mmm can offer protection to a level similar to the current live attenuated (T1/44) vaccine formulation

    Biosafety education relevant to genetically engineered crops for academic and non-academic stakeholders in East Africa

    Get PDF
    Development and deployment of genetically engineered crops requires effective environmental and food safety assessment capacity. In-country expertise is needed to make locally appropriate decisions. In April 2007, biosafety and biotechnology scientists, regulators, educators, and communicators from Kenya, Tanzania, and Uganda, met to examine the status and needs of biosafety training and educational programs in East Africa. Workshop participants emphasized the importance of developing biosafety capacity within their countries and regionally. Key recommendations included identification of key biosafety curricular components for university students; collaboration among institutions and countries; development of informational materials for non-academic stakeholders and media; and organization of study tours for decision makers. It was emphasized that biosafety knowledge is important for all aspects of environmental health, food safety, and human and animal hygiene. Thus, development of biosafety expertise, policies and procedures can be a stepping stone to facilitate improved biosafety for all aspects of society and the environment

    Capsular polysaccharide from Mycoplasma mycoides subsp.mycoides shows potential for protection against Contagious Bovine Pleuropneumonia

    No full text
    Contagious Bovine Pleuropneumonia (CBPP) is a severe respiratory disease caused byMycoplasma mycoides subsp. mycoides (Mmm) which is widespread in Africa. The capsule polysaccharide (CPS) of Mmm is one of the few identified virulence determinants. In a previous study, immunization of mice against CPS generated antibodies, but they were not able to prevent multiplication of Mmm in this model animal. However, mice cannot be considered as a suitable animal model, as Mmm does not induce pathology in this species. Our aim was to induce antibody responses to CPS in cattle, and challenge them when they had specific CPS antibody titres similar or higher than those from cattle vaccinated with the live vaccine. The CPS was linked to the carrier protein ovalbumin via a carbodiimide-mediated condensation with 1-ethyl-3(3-imethylaminopropyl) carbodiimide (EDC). Ten animals were immunized twice and challenged three weeks after the booster inoculation, and compared to a group of challenged non-immunized cattle. When administered subcutaneously to adult cattle, the vaccine elicited CPS-specific antibody responses with the same or a higher titre than animals vaccinated with the live vaccine. Pathology in the group of immunized animals was significantly reduced (57%) after challenge with Mmm strain Afadé compared to the non-immunized group, a figure in the range of the protection provided by the live vaccine
    corecore