329 research outputs found

    On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

    Get PDF
    We give a lower bound on the iteration complexity of a natural class of Lagrangean-relaxation algorithms for approximately solving packing/covering linear programs. We show that, given an input with mm random 0/1-constraints on nn variables, with high probability, any such algorithm requires Ω(ρlog(m)/ϵ2)\Omega(\rho \log(m)/\epsilon^2) iterations to compute a (1+ϵ)(1+\epsilon)-approximate solution, where ρ\rho is the width of the input. The bound is tight for a range of the parameters (m,n,ρ,ϵ)(m,n,\rho,\epsilon). The algorithms in the class include Dantzig-Wolfe decomposition, Benders' decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy argument to show an analogous lower bound on the support size of (1+ϵ)(1+\epsilon)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games

    Lessons from spatial and environmental assessment of energy potentials for Anaerobic Digestion production systems applied to the Netherlands

    Get PDF
    Anaerobic digestion (AD) can play an important role in achieving the renewable energy goals set within the European Union. Within this article the focus is placed on reaching the Dutch local renewable production goal set for the year 2020 with locally available biomass waste flows, avoiding intensive farming and long transport distances of biomass and energy carriers. The bio-energy yields, efficiency and environmental sustainability are analyzed for five municipalities in the northern part of the Netherlands, using three utilization pathways: green gas production, combined heat and power, and waste management. Literature has indicated that there is sufficient bio-energy potential in local waste streams to reach the aforementioned goal. However, the average useful energy finally produced by the AD production pathway is significantly lower, often due to poor quality biomass and difficult harvesting conditions. Furthermore, of the potential bio-energy input in the three utilization pathways considered in this article, on average: 73% can be extracted as green gas; 57% as heat and power; and 44% as green gas in the waste management pathway. This demonstrates that the Dutch renewable production goal cannot be reached. The green gas utilization pathway is preferable for reaching production goals as it retains the highest amount of energy from the feedstock. However, environmental sustainability favors the waste management pathway as it has a higher overall efficiency, and lower emissions and environmental impacts. The main lessons drawn from the aforementioned are twofold: there is a substantial gap between bio-energy potential and net energy gain; there is also a gap between top-down regulation and actual emission reduction and sustainability. Therefore, a full life cycle-based understanding of the absolute energy and environmental impact of biogas production and utilization pathways is required to help governments to develop optimal policies serving a broad set of sustainable objectives. Well-founded ideas and decisions are needed on how best to utilize the limited biomass availability most effectively and sustainably in the near and far future, as biogas can play a supportive role for integrating other renewable sources into local decentralized energy systems as a flexible and storable energy source. (C) 2016 Elsevier Ltd. All rights reserved

    Mapping the Early Cortical Folding Process in the Preterm Newborn Brain

    Get PDF
    In the developing human brain, the cortical sulci formation is a complex process starting from 14 weeks of gestation onward. The potential influence of underlying mechanisms (genetic, epigenetic, mechanical or environmental) is still poorly understood, because reliable quantification in vivo of the early folding is lacking. In this study, we investigate the sulcal emergence noninvasively in 35 preterm newborns, by applying dedicated postprocessing tools to magnetic resonance images acquired shortly after birth over a developmental period critical for the human cortex maturation (26-36 weeks of age). Through the original three-dimensional reconstruction of the interface between developing cortex and white matter and correlation with volumetric measurements, we document early sulcation in vivo, and quantify changes with age, gender, and the presence of small white matter lesions. We observe a trend towards lower cortical surface, smaller cortex, and white matter volumes, but equivalent sulcation in females compared with males. By precisely mapping the sulci, we highlight interindividual variability in time appearance and interhemispherical asymmetries, with a larger right superior temporal sulcus than the left. Thus, such an approach, included in a longitudinal follow-up, may provide early indicators on the structural basis of cortical functional specialization and abnormalities induced by genetic and environmental factor

    Symmetric vs asymmetric protection levels in SDC methods for tabular data

    Get PDF
    The final publication is available at link.springer.comProtection levels on sensitive cells—which are key parameters of any statistical disclosure control method for tabular data—are related to the difficulty of any attacker to recompute a good estimation of the true cell values. Those protection levels are two numbers (one for the lower protection, the other for the upper protection) imposing a safety interval around the cell value, that is, no attacker should be able to recompute an estimate within such safety interval. In the symmetric case the lower and upper protection levels are equal; otherwise they are referred as asymmetric protection levels. In this work we empirically study the effect of symmetry in protection levels for three protection methods: cell suppression problem (CSP), controlled tabular adjustment (CTA), and interval protection (IP). Since CSP and CTA are mixed integer linear optimization problems, it is seen that the symmetry (or not) of protection levels affect to the CPU time needed to compute a solution. For IP, a linear optimization problem, it is observed that the symmetry heavily affects to the quality of the solution provided rather than to the solution time.Peer ReviewedPostprint (author's final draft

    Temperature distribution in a gas-solid fixed bed probed by rapid magnetic resonance imaging

    Full text link
    Controlling the temperature distribution inside catalytic fixed bed reactors is crucial for yield optimization and process stability. Yet, in situ temperature measurements with spatial and temporal resolution are still challenging. In this work, we perform temperature measurements in a cylindrical fixed bed reactor by combining the capabilities of real-time magnetic resonance imaging (MRI) with the temperature-dependent proton resonance frequency (PRF) shift of water. Three-dimensional (3D) temperature maps are acquired while heating the bed from room temperature to 60~^{\circ}C using hot air. The obtained results show a clear temperature gradient along the axial and radial dimensions and agree with optical temperature probe measurements with an average error of ±\pm 1.5~^{\circ}C. We believe that the MR thermometry methodology presented here opens new perspectives for the fundamental study of mass and heat transfer in gas-solid fixed beds and in the future might be extended to the study of reactive gas-solid systems

    Primary cortical folding in the human newborn: an early marker of later functional development

    Get PDF
    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long before the appearance of functional symptoms. So far, the precise mechanisms responsible for such alteration in the convolution pattern during intra-uterine or post-natal development are still poorly understood. Here we compared anatomical and functional brain development in vivo among 45 premature newborns who experienced different intra-uterine environments: 22 normal singletons, 12 twins and 11 newborns with intrauterine growth restriction (IUGR). Using magnetic resonance imaging (MRI) and dedicated post-processing tools, we investigated early disturbances in cortical formation at birth, over the developmental period critical for the emergence of convolutions (26-36 weeks of gestational age), and defined early ‘endophenotypes' of sulcal development. We demonstrated that twins have a delayed but harmonious maturation, with reduced surface and sulcation index compared to singletons, whereas the gyrification of IUGR newborns is discordant to the normal developmental trajectory, with a more pronounced reduction of surface in relation to the sulcation index compared to normal newborns. Furthermore, we showed that these structural measurements of the brain at birth are predictors of infants' outcome at term equivalent age, for MRI-based cerebral volumes and neurobehavioural development evaluated with the assessment of preterm infant's behaviour (APIB
    corecore