34 research outputs found

    Dissimilar responses of fungal and bacterial communities to soil transplantation simulating abrupt climate changes.

    Get PDF
    Both fungi and bacteria play essential roles in regulating soil carbon cycling. To predict future carbon stability, it is imperative to understand their responses to environmental changes, which is subject to large uncertainty. As current global warming is causing range shifts toward higher latitudes, we conducted three reciprocal soil transplantation experiments over large transects in 2005 to simulate abrupt climate changes. Six years after soil transplantation, fungal biomass of transplanted soils showed a general pattern of changes from donor sites to destination, which were more obvious in bare fallow soils than in maize cropped soils. Strikingly, fungal community compositions were clustered by sites, demonstrating that fungi of transplanted soils acclimatized to the destination environment. Several fungal taxa displayed sharp changes in relative abundance, including Podospora, Chaetomium, Mortierella and Phialemonium. In contrast, bacterial communities remained largely unchanged. Consistent with the important role of fungi in affecting soil carbon cycling, 8.1%-10.0% of fungal genes encoding carbon-decomposing enzymes were significantly (pĀ <Ā 0.01) increased as compared with those from bacteria (5.7%-8.4%). To explain these observations, we found that fungal occupancy across samples was mainly determined by annual average air temperature and rainfall, whereas bacterial occupancy was more closely related to soil conditions, which remained stable 6Ā years after soil transplantation. Together, these results demonstrate dissimilar response patterns and resource partitioning between fungi and bacteria, which may have considerable consequences for ecosystem-scale carbon cycling

    What to consider when pseudohypoparathyroidism is ruled out: IPPSD and differential diagnosis

    Get PDF
    Background: Pseudohypoparathyroidism (PHP) is a rare disease whose phenotypic features are rather difficult to identify in some cases. Thus, although these patients may present with the Albright''s hereditary osteodystrophy (AHO) phenotype, which is characterized by small stature, obesity with a rounded face, subcutaneous ossifications, mental retardation and brachydactyly, its manifestations are somewhat variable. Indeed, some of them present with a complete phenotype, whereas others show only subtle manifestations. In addition, the features of the AHO phenotype are not specific to it and a similar phenotype is also commonly observed in other syndromes. Brachydactyly type E (BDE) is the most specific and objective feature of the AHO phenotype, and several genes have been associated with syndromic BDE in the past few years. Moreover, these syndromes have a skeletal and endocrinological phenotype that overlaps with AHO/PHP. In light of the above, we have developed an algorithm to aid in genetic testing of patients with clinical features of AHO but with no causative molecular defect at the GNAS locus. Starting with the feature of brachydactyly, this algorithm allows the differential diagnosis to be broadened and, with the addition of other clinical features, can guide genetic testing. Methods: We reviewed our series of patients (n = 23) with a clinical diagnosis of AHO and with brachydactyly type E or similar pattern, who were negative for GNAS anomalies, and classify them according to the diagnosis algorithm to finally propose and analyse the most probable gene(s) in each case. Results: A review of the clinical data for our series of patients, and subsequent analysis of the candidate gene(s), allowed detection of the underlying molecular defect in 12 out of 23 patients: five patients harboured a mutation in PRKAR1A, one in PDE4D, four in TRPS1 and two in PTHLH. Conclusions: This study confirmed that the screening of other genes implicated in syndromes with BDE and AHO or a similar phenotype is very helpful for establishing a correct genetic diagnosis for those patients who have been misdiagnosed with "AHO-like phenotype" with an unknown genetic cause, and also for better describing the characteristic and differential features of these less common syndromes

    Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation

    Get PDF
    The aim of this study was to apply a generated Ī”tku70 strain with increased homologous recombination efficiency from the mycoparasitic fungus Trichoderma virens for studying the involvement of laccases in the degradation of sclerotia of plant pathogenic fungi. Inactivation of the non-homologous end-joining pathway has become a successful tool in filamentous fungi to overcome poor targeting efficiencies for genetic engineering. Here, we applied this principle to the biocontrol fungus T. virens, strain I10, by deleting its tku70 gene. This strain was subsequently used to delete the laccase gene lcc1, which we found to be expressed after interaction of T. virens with sclerotia of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Lcc1 was strongly upregulated at early colonization of B. cinerea sclerotia and steadily induced during colonization of S. sclerotiorum sclerotia. The Ī”tku70Ī”lcc1 mutant was altered in its ability to degrade the sclerotia of B. cinerea and S. sclerotiorum. Interestingly, while the decaying ability for B. cinerea sclerotia was significantly decreased, that to degrade S. sclerotiorum sclerotia was even enhanced, suggesting the operation of different mechanisms in the mycoparasitism of these two types of sclerotia by the laccase LCC1

    Outcome of phyllodes tumors of the breast: A series of consecutive cases.

    No full text

    Distributions of C-22-C-30 even-carbon-number n-alkanes in ocean anoxic event 1 samples from the Basque-Cantabrian Basin

    No full text
    The Ocean Anoxic Event 1 (OAE-1) in central sites of the Basque-Cantabrian Basin exhibits very reducing depositional conditions of sedimentation. These sedimentation events have left a distinct mixture of hydrocarbons that are represented by C22-C30 n-alkanes with a predominance of the even-carbon-number homologues, high relative proportions of squalane and C16-C24 n-alkylcyclopentanes predominated by n-undecyl-, n-tridecyl- and n-pentadecylcyclopentane. Other minor compounds encompass a series of C18-C21 n-alkylcyclohexanes and C18-C24 dimethyl n-alkylcyclohexanes maximized by the even-carbon-number homologues as well as iso- and anteiso-alkanes. This unusual distribution of n-alkanes in this environment provides a new case for comparison with previously reported hypersaline and phosphorite sedimentary deposits where the occurrence of similar n-alkane distributions was reported. In the present case, these major n-alkanes and squalane are indicative of transformation under strong reducing conditions. In contrast, the occurrence of the alkylcyclopentanes, irrespective of the presence of even-carbon-number n-alkanes or squalane, suggests that reductive cyclization of fatty acids is less dependent on strong reducing conditions

    Distributions of C-22-C-30 even-carbon-number n-alkanes in ocean anoxic event 1 samples from the Basque-Cantabrian Basin

    No full text
    The Ocean Anoxic Event 1 (OAE-1) in central sites of the Basque-Cantabrian Basin exhibits very reducing depositional conditions of sedimentation. These sedimentation events have left a distinct mixture of hydrocarbons that are represented by C22-C30 n-alkanes with a predominance of the even-carbon-number homologues, high relative proportions of squalane and C16-C24 n-alkylcyclopentanes predominated by n-undecyl-, n-tridecyl- and n-pentadecylcyclopentane. Other minor compounds encompass a series of C18-C21 n-alkylcyclohexanes and C18-C24 dimethyl n-alkylcyclohexanes maximized by the even-carbon-number homologues as well as iso- and anteiso-alkanes. This unusual distribution of n-alkanes in this environment provides a new case for comparison with previously reported hypersaline and phosphorite sedimentary deposits where the occurrence of similar n-alkane distributions was reported. In the present case, these major n-alkanes and squalane are indicative of transformation under strong reducing conditions. In contrast, the occurrence of the alkylcyclopentanes, irrespective of the presence of even-carbon-number n-alkanes or squalane, suggests that reductive cyclization of fatty acids is less dependent on strong reducing conditions

    Clinical characteristics of SARS-CoV-2 infection in children with cystic fibrosis: An international observational study

    No full text
    Background:Thepresenceofco-morbidities,includingunderlyingrespiratoryproblems,hasbeenidenti-fiedasariskfactorforsevereCOVID-19disease.InformationontheclinicalcourseofSARS-CoV-2infec-tioninchildrenwithcysticfibrosis(CF)islimited,yetvitaltoprovideaccurateadviceforchildrenwithCF,theirfamilies,caregiversandclinicalteams.Methods:CasesofSARS-CoV-2infectioninchildrenwithCFagedlessthan18yearswerecollatedbytheCFRegistryGlobalHarmonizationGroupacross13countriesbetween1Februaryand7August2020.Results:Dataon105childrenwerecollatedandanalysed.Medianageofcaseswastenyears(interquar-tilerange6\u201315),54%weremaleandmedianpercentagepredictedforcedexpiratoryvolumeinonesecond was94%(interquartilerange79\u2013104).Themajority(71%)ofchildrenweremanagedinthecommunityduringtheirCOVID-19illness.Outof24childrenadmittedtohospital,sixrequiredsupplementaryoxygenandtwonon-invasiveventilation.Aroundhalfwereprescribedantibiotics,fivechildrenreceivedantivi-raltreatments,fourazithromycinandoneadditionalcorticosteroids.ChildrenthatwerehospitalisedhadlowerlungfunctionandreducedbodymassindexZ-scores.Onechilddiedsixweeksaftertestingposi-tiveforSARS-CoV-2followingadeteriorationthatwasnotattributedtoCOVID-19disease. Conclusions:SARS-CoV-2infectioninchildrenwithCFisusuallyassociatedwithamildillnessinthosewhodonothavepre-existingseverelungdiseas
    corecore