1,131 research outputs found
EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes
Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges
Resonance structure in the Li^- photodetachment cross section
We report on the first observation of resonance structure in the total cross
section for the photodetachment of Li^-. The structure arises from the
autodetaching decay of doubly excited ^1P states of Li^- that are bound with
respect to the 3p state of the Li atom. Calculations have been performed for
both Li^- and H^- to assist in the identification of these resonances. The
lowest lying resonance is a symmetrically excited intrashell resonance. Higher
lying asymmetrically excited intershell states are observed which converge on
the Li(3p) limit.Comment: 4 pages, 2 figure, 19 references, RevTeX, figures in ep
Photoionization in the time and frequency domain
Ultrafast processes in matter, such as the electron emission following light
absorption, can now be studied using ultrashort light pulses of attosecond
duration (s) in the extreme ultraviolet spectral range. The lack of
spectral resolution due to the use of short light pulses may raise serious
issues in the interpretation of the experimental results and the comparison
with detailed theoretical calculations. Here, we determine photoionization time
delays in neon atoms over a 40 eV energy range with an interferometric
technique combining high temporal and spectral resolution. We spectrally
disentangle direct ionization from ionization with shake up, where a second
electron is left in an excited state, thus obtaining excellent agreement with
theoretical calculations and thereby solving a puzzle raised by seven-year-old
measurements. Our experimental approach does not have conceptual limits,
allowing us to foresee, with the help of upcoming laser technology, ultra-high
resolution time-frequency studies from the visible to the x-ray range.Comment: 5 pages, 4 figure
Dielectronic Resonance Method for Measuring Isotope Shifts
Longstanding problems in the comparison of very accurate hyperfine-shift
measurements to theory were partly overcome by precise measurements on
few-electron highly-charged ions. Still the agreement between theory and
experiment is unsatisfactory. In this paper, we present a radically new way of
precisely measuring hyperfine shifts, and demonstrate its effectiveness in the
case of the hyperfine shift of and in
. It is based on the precise detection of dielectronic
resonances that occur in electron-ion recombination at very low energy. This
allows us to determine the hyperfine constant to around 0.6 meV accuracy which
is on the order of 10%
g factor of Li-like ions with nonzero nuclear spin
The fully relativistic theory of the g factor of Li-like ions with nonzero
nuclear spin is considered for the (1s)^2 2s state. The magnetic-dipole
hyperfine-interaction correction to the atomic g factor is calculated including
the one-electron contributions as well as the interelectronic-interaction
effects of order 1/Z. This correction is combined with the
interelectronic-interaction, QED, nuclear recoil, and nuclear size corrections
to obtain high-precision theoretical values for the g factor of Li-like ions
with nonzero nuclear spin. The results can be used for a precise determination
of nuclear magnetic moments from g factor experiments.Comment: 20 pages, 5 figure
CP-odd Phase Correlations and Electric Dipole Moments
We revisit the constraints imposed by electric dipole moments (EDMs) of
nucleons and heavy atoms on new CP-violating sources within supersymmetric
theories. We point out that certain two-loop renormalization group corrections
induce significant mixing between the basis-invariant CP-odd phases. In the
framework of the constrained minimal supersymmetric standard model (CMSSM), the
CP-odd invariant related to the soft trilinear A-phase at the GUT scale,
theta_A, induces non-trivial and distinct CP-odd phases for the three gaugino
masses at the weak scale. The latter give one-loop contributions to EDMs
enhanced by tan beta, and can provide the dominant contribution to the electron
EDM induced by theta_A. We perform a detailed analysis of the EDM constraints
within the CMSSM, exhibiting the reach, in terms of sparticle spectra, which
may be obtained assuming generic phases, as well as the limits on the CP-odd
phases for some specific parameter points where detailed phenomenological
studies are available. We also illustrate how this reach will expand with
results from the next generation of experiments which are currently in
development.Comment: 31 pages, 21 eps figures; v2: additional remarks on 2-loop threshold
corrections and references added; v3: typos corrected, to appear in Phys.
Rev.
Correlated many-body treatment of Breit interaction with application to cesium atomic properties and parity violation
Corrections from Breit interaction to basic properties of atomic 133Cs are
determined in the framework of third-order relativistic many-body perturbation
theory. The corrections to energies, hyperfine-structure constants,
off-diagonal hyperfine 6S-7S amplitude, and electric-dipole matrix elements are
tabulated. It is demonstrated that the Breit corrections to correlations are
comparable to the Breit corrections at the Dirac-Hartree-Fock level.
Modification of the parity-nonconserving (PNC) 6S-7S amplitude due to Breit
interaction is also evaluated; the resulting weak charge of Cs shows no
significant deviation from the prediction of the standard model of elementary
particles. The neutron skin correction to the PNC amplitude is also estimated
to be -0.2% with an error bound of 30% based on the analysis of recent
experiments with antiprotonic atoms. The present work supplements publication
[A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000)] with a discussion of the
formalism and provides additional numerical results and updated discussion of
parity violation.Comment: 16 pages; 5 figs; submitted to Phys. Rev.
Relativistic Calculation of two-Electron one-Photon and Hypersatellite Transition Energies for Elements
Energies of two-electron one-photon transitions from initial double K-hole
states were computed using the Dirac-Fock model. The transition energies of
competing processes, the K hypersatellites, were also computed. The
results are compared to experiment and to other theoretical calculations.Comment: accepted versio
Two--Electron Atoms in Short Intense Laser Pulses
We discuss a method of solving the time dependent Schrodinger equation for
atoms with two active electrons in a strong laser field, which we used in a
previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to
calculate ionization, double excitation and harmonic generation in Helium by
short laser pulses. The method employs complex scaling and an expansion in an
explicitly correlated basis. Convergence of the calculations is documented and
error estimates are provided. The results for Helium at peak intensities up to
10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly
accurate calculations are presented for electron detachment and double
excitation of the negative hydrogen ion.Comment: 14 pages, including figure
Thermal adaptation of net ecosystem exchange
Thermal adaptation of gross primary production and ecosystem respiration has been well documented over broad thermal gradients. However, no study has examined their interaction as a function of temperature, i.e. the thermal responses of net ecosystem exchange of carbon (NEE). In this study, we constructed temperature response curves of NEE against temperature using 380 site-years of eddy covariance data at 72 forest, grassland and shrubland ecosystems located at latitudes ranging from ~29° N to 64° N. The response curves were used to define two critical temperatures: transition temperature (<i>T</i><sub>b</sub>) at which ecosystem transfer from carbon source to sink and optimal temperature (<i>T</i><sub>o</sub>) at which carbon uptake is maximized. <i>T</i><sub>b</sub> was strongly correlated with annual mean air temperature. <i>T</i><sub>o</sub> was strongly correlated with mean temperature during the net carbon uptake period across the study ecosystems. Our results imply that the net ecosystem exchange of carbon adapts to the temperature across the geographical range due to intrinsic connections between vegetation primary production and ecosystem respiration
- …
