Ultrafast processes in matter, such as the electron emission following light
absorption, can now be studied using ultrashort light pulses of attosecond
duration (10−18s) in the extreme ultraviolet spectral range. The lack of
spectral resolution due to the use of short light pulses may raise serious
issues in the interpretation of the experimental results and the comparison
with detailed theoretical calculations. Here, we determine photoionization time
delays in neon atoms over a 40 eV energy range with an interferometric
technique combining high temporal and spectral resolution. We spectrally
disentangle direct ionization from ionization with shake up, where a second
electron is left in an excited state, thus obtaining excellent agreement with
theoretical calculations and thereby solving a puzzle raised by seven-year-old
measurements. Our experimental approach does not have conceptual limits,
allowing us to foresee, with the help of upcoming laser technology, ultra-high
resolution time-frequency studies from the visible to the x-ray range.Comment: 5 pages, 4 figure