398 research outputs found

    The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    Get PDF
    In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP) has developed a Volta Basin Water Allocation System (VB-WAS), a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH) serve as input data for a river basin management model (MIKE BASIN). MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin

    MITO measurements of the Sunyaev-Zeldovich Effect in the Coma cluster of galaxies

    Get PDF
    We have measured the Sunyaev-Zeldovich effect towards the Coma cluster (A1656) with the MITO experiment, a 2.6-m telescope equipped with a 4-channel 17 arcminute (FWHM) photometer. Measurements at frequency bands 143+/-15, 214+/-15, 272+/-16 and 353+/-13 GHz, were made during 120 drift scans of Coma. We describe the observations and data analysis that involved extraction of the S-Z signal by employing a spatial and spectral de-correlation scheme to remove a dominant atmospheric component. The deduced values of the thermal S-Z effect in the first three bands are DT_{0} = -179+/-38,-33+/-81,170+/-35 microKelvin in the cluster center. The corresponding optical depth, tau=(4.1+/-0.9) 10^{-3}, is consistent (within errors) with both the value from a previous low frequency S-Z measurement, and the value predicted from the X-ray deduced gas parameters.Comment: Ap.J.Letters accepted, 4 pages, 2 figure

    Small multi-purpose reservoir ensemble planning

    Get PDF
    People living in arid areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs are a widely used form of infrastructure for the provision of water. They supply water for domestic use, livestock watering, small scale irrigation, and other beneficial uses. The reservoirs are hydrologically linked by the streams that have been dammed. Although reservoirs store a large quantity of water and have a significant effect on downstream flows, they have rarely been considered as systems, with synergies and tradeoffs resulting from the number and density of their structures. Often reservoirs were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. A significant number are functioning sub-optimally and/or are falling into disrepair. This indicates that there is room for improvement in the planning, operation, and maintenance of small reservoirs. The water management institutions in Volta, Limpopo, and Sao Francisco Basins are being revamped to better serve their constituencies. We have an opportunity to collaborate with government officials, stakeholders, and farmers who are actively looking for ways to improve the planning process. The Small Reservoir Project team developed a tool kit to support the planning, development, and management of small reservoir ensembles on the basin level and the use of small multi-purpose reservoirs that are properly located, well designed, operated and maintained in sustainable fashion, and economically viable on the local/community level. There are tools to improve intervention planning, storage estimation and the analysis of the hydrology, ecology and health of small reservoirs. There ara also tools for the analysis of institutional and economic aspects of the reservoirs. The toolkit not only includes the necessary analytical instruments, but also a set of process oriented tools for improved participatory decision making. The Tool Kit is meant to be a living “document” with additional tools and experiences to be added as they are developed

    Hydrogen-like nitrogen radio line from hot interstellar and warm-hot intergalactic gas

    Full text link
    Hyperfine structure lines of highly-charged ions may open a new window in observations of hot rarefied astrophysical plasmas. In this paper we discuss spectral lines of isotopes and ions abundant at temperatures 10^5-10^7 K, characteristic for warm-hot intergalactic medium, hot interstellar medium, starburst galaxies, their superwinds and young supernova remnants. Observations of these lines will allow to study bulk and turbulent motions of the observed target and will broaden the information about the gas ionization state, chemical and isotopic composition. The most prospective is the line of the major nitrogen isotope having wavelength 5.65 mm (Sunyaev and Churazov 1084). Wavelength of this line is well-suited for observation of objects at z=0.15-0.6 when it is redshifted to 6.5-9 mm spectral band widely-used in ground-based radio observations, and, for example, for z>=1.3, when the line can be observed in 1.3 cm band and at lower frequencies. Modern and future radio telescopes and interferometers are able to observe the absorption by 14-N VII in the warm-hot intergalactic medium at redshifts above z=0.15 in spectra of brightest mm-band sources. Sub-millimeter emission lines of several most abundant isotopes having hyperfine splitting might also be detected in spectra of young supernova remnants.Comment: 12 pages, 5 figures, accepted by Astronomy Letters; v3: details added; error fixe

    Focal Plane Alignment Utilizing Optical CMM

    Get PDF
    In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation is sketched in Figure 2(b) (the figure also shows the tapping tool and where to tap). At this point the fasteners for the PCB are torqued slightly so the PCB can still move. The PCB location is adjusted again with the tapping tool. This process is repeated 3 to 4 times until the final torque is achieved. The oversized mounting holes are then filled with a liquid bonding agent to secure the board in position (not shown in the sketch). A 10- to 30-micron mounting accuracy has been achieved utilizing this method.

    Are the affluent prepared to pay for the planet? Explaining willingness to pay for public and quasi-private environmental goods in Switzerland

    Get PDF
    A large number of ‘environmental justice’ studies show that wealthier people are less affected by environmental burdens and also consume more resources than poorer people. Given this double inequity, we ask, to what extent are affluent people prepared to pay to protect the environment? The analyses are couched within the compensation/affluence hypothesis, which states that wealthier persons are able to spend more for environmental protection than their poorer counterparts. Further, we take into account various competing economic, psychological and sociological determinants of individuals’ willingness to pay (WTP) for both public environmental goods (e.g., general environmental protection) and quasi-private environmental goods (e.g., CO2-neutral cars). Such a comprehensive approach contrasts with most other studies in this field that focus on a limited number of determinants and goods. Multivariate analyses are based on a general population survey in Switzerland (N = 3,369). Although income has a positive and significant effect on WTP supporting the compensation hypothesis, determinants such as generalized interpersonal trust that is assumed to be positively associated with civic engagement and environmental concern prove to be equally important. Moreover, we demonstrate for the first time that time preferences can considerably influence survey-based WTP for environmental goods; since investments in the environment typically pay off in the distant future, persons with a high subjective discount rate are less likely to commit
    • 

    corecore