42 research outputs found
Stability of tryptophan during food processing and storage: 1. Comparative losses of tryptophan, lysine and methionine in different model systems
1. The stability of tryptophan was evaluated in several different food model systems using a chemical method (high pressure liquid chromatography after alkaline-hydrolysis) and rat assays. Losses of tryptophan were compared with the losses of lysine and methionine. 2. Whey proteins stored in the presence of oxidizing lipids showed large losses of lysine and extensive methionine oxidation but only minor losses of tryptophan as measured chemically. The observed decrease in bioavailable tryptophan was explained by a lower protein digestibility. 3. Casein treated with hydrogen peroxide to oxidize all methionine to methionine sulphoxide showed a 9% loss in bioavailable tryptophan. 4. When casein was reacted with caffeic acid at pH 7 in the presence of monophenol monooxygenase (tyrosinase; EC 1.14.18.l), no chemical loss of tryptophan occurred, although fluorodinitrobenzene-reactive lysine fell by 23%. Tryptophan bioavailability fell IS%, partly due to an 8% reduction in protein digestibility. 5. Alkali-treated casein (0.15 M-sodium hydroxide, 80°,4 h) did not support rat growth. Chemically-determined tryptophan, available tryptophan and true nitrogen digestibility fell 10, 46 and 23% respectively. Racemization of tryptophan was found to be 10% (D/(D+L)). 6. In whole-milk powder, which had undergone ‘early' or ‘advanced' Maillard reactions, tryptophan, determined chemically or in rat assays, was virtually unchanged. Extensive lysine losses occurred. 7. It was concluded that losses of tryptophan during food processing and storage are small and of only minor nutritional importance, especially when compared with much larger losses of lysine and the more extensive oxidation of methionin
Glycation marker glucosepane increases with the progression of osteoarthritis and correlates with morphological and functional changes of cartilage in vivo
Background: Changes of serum concentrations of glycated, oxidized, and nitrated amino acids and hydroxyproline and anticyclic citrullinated peptide antibody status combined by machine learning techniques in algorithms have recently been found to provide improved diagnosis and typing of early-stage arthritis of the knee, including osteoarthritis (OA), in patients. The association of glycated, oxidized, and nitrated amino acids released from the joint with development and progression of knee OA is unknown. We studied this in an OA animal model as well as interleukin-1β-activated human chondrocytes in vitro and translated key findings to patients with OA. 
Methods: Sixty male 3-week-old Dunkin-Hartley guinea pigs were studied. Separate groups of 12 animals were killed at age 4, 12, 20, 28 and 36 weeks, and histological severity of knee OA was evaluated, and cartilage rheological properties were assessed. Human chondrocytes cultured in multilayers were treated for 10 days with interleukin-1β. Human patients with early and advanced OA and healthy controls were recruited, blood samples were collected, and serum or plasma was prepared. Serum, plasma, and culture medium were analyzed for glycated, oxidized, and nitrated amino acids. 
Results: Severity of OA increased progressively in guinea pigs with age. Glycated, oxidized, and nitrated amino acids were increased markedly at week 36, with glucosepane and dityrosine increasing progressively from weeks 20 and 28, respectively. Glucosepane correlated positively with OA histological severity (r = 0.58, p < 0.0001) and instantaneous modulus (r = 0.52–0.56; p < 0.0001), oxidation free adducts correlated positively with OA severity (p < 0.0009–0.0062), and hydroxyproline correlated positively with cartilage thickness (p < 0.0003–0.003). Interleukin-1β increased the release of glycated and nitrated amino acids from chondrocytes in vitro. In clinical translation, plasma glucosepane was increased 38% in early-stage OA (p < 0.05) and sixfold in patients with advanced OA (p < 0.001) compared with healthy controls. 
Conclusions: These studies further advance the prospective role of glycated, oxidized, and nitrated amino acids as serum biomarkers in diagnostic algorithms for early-stage detection of OA and other arthritic disease. Plasma glucosepane, reported here for the first time to our knowledge, may improve early-stage diagnosis and progression of clinical OA
Serum Levels of Advanced Glycation Endproducts and Other Markers of Protein Damage in Early Diabetic Nephropathy in Type 1 Diabetes
Objective
To determine the role of markers of plasma protein damage by glycation, oxidation and nitration in microalbuminuria onset or subsequent decline of glomerular filtration rate (termed “early GFR decline”) in patients with type 1 diabetes.
Methods
From the 1st Joslin Kidney Study, we selected 30 patients with longstanding normoalbuminuria and 55 patients with new onset microalbuminuria. Patients with microalbuminuria had 8–12 years follow-up during which 33 had stable GFR and 22 early GFR decline. Mean baseline GFRCYSTATIN C was similar between the three groups. Glycation, oxidation and nitration markers were measured in protein and ultrafiltrate at baseline by liquid chromatography-tandem mass spectrometry using the most reliable methods currently available.
Results
Though none were significantly different between patients with microalbuminuria with stable or early GFR decline, levels of 6 protein damage adduct residues of plasma protein and 4 related free adducts of plasma ultrafiltrate were significantly different in patients with microalbuminuria compared to normoalbuminuria controls. Three protein damage adduct residues were decreased and 3 increased in microalbuminuria while 3 free adducts were decreased and one increased in microalbuminuria. The most profound differences were of N-formylkynurenine (NFK) protein adduct residue and Nω-carboxymethylarginine (CMA) free adduct in which levels were markedly lower in microalbuminuria (P<0.001 for both).
Conclusions
Complex processes influence levels of plasma protein damage and related proteolysis product free adducts in type 1 diabetes and microalbuminuria. The effects observed point to the possibility that patients who have efficient mechanisms of disposal of damaged proteins might be at an increased risk of developing microalbuminuria but not early renal function decline. The findings support the concept that the mechanisms responsible for microalbuminuria may differ from the mechanisms involved in the initiation of early renal function decline
Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins
Diffuse and internal reflectance spectroscopy for the determination of trace metals in powdered solids: cobalt and copper collected with zinc tetrathio-cyanatomercurate
Identification and determination of N-ε-carboxymethyllysine by gas-liquid chromatography
Identity of the cholesterol-raising factor from boiled coffee and its effects on liver function enzymes.
Representativeness of coffee aroma extracts : a comparison of different extraction methods
International audienc
