410 research outputs found

    The evolutionary dynamics of the Helena retrotransposon revealed by sequenced Drosophila genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that genomes contain a mixture of transposable elements, some of which are still active and others ancient relics that have degenerated. This is true for the non-LTR retrotransposon <it>Helena</it>, of which only degenerate sequences have been shown to be present in some species (<it>Drosophila melanogaster</it>), whereas putatively active sequences are present in others (<it>D. simulans</it>). Combining experimental and population analyses with the sequence analysis of the 12 <it>Drosophila </it>genomes, we have investigated the evolution of <it>Helena</it>, and propose a possible scenario for the evolution of this element.</p> <p>Results</p> <p>We show that six species of <it>Drosophila </it>have the <it>Helena </it>transposable element at different stages of its evolution. The copy number is highly variable among these species, but most of them are truncated at the 5' ends and also harbor several internal deletions and insertions suggesting that they are inactive in all species, except in <it>D. mojavensis </it>in which quantitative RT-PCR experiments have identified a putative active copy.</p> <p>Conclusion</p> <p>Our data suggest that <it>Helena </it>was present in the common ancestor of the <it>Drosophila </it>genus, which has been vertically transmitted to the derived lineages, but that it has been lost in some of them. The wide variation in copy number and sequence degeneration in the different species suggest that the evolutionary dynamics of <it>Helena </it>depends on the genomic environment of the host species.</p

    Nickel Silicide Formation Using Excimer Laser Annealing

    Get PDF
    AbstractIn this work, we report on a self-aligned nickel silicide formation technique based on excimer laser annealing (ELA). We evaluate this process for the front contact formation of industrial PERC type solar cells on random pyramid textured Si surfaces where damage to surface texture, emitter passivation, or to the shallow junction should be avoided or minimized. PERC type solar cells obtained by POCl3 diffusion were processed on large area (12.5x12.5cm2) CZ-Si. Self-aligned litho-free Ni/Cu contacts defined by ps-laser ablation of the SiO2/SiNx anti-reflective coating (ARC) and subsequent ELA of the Ni layer were compared to conventional Ag screen printed contacts.The novel ELA process results in an absolute gain in Jsc of 0.8mA/cm2 as well as a drop of 0.3Ω.cm2 in series resistance (Rs) compared to SP Ag contacts due to reduced shading and resistance losses. This leads to 0.5% absolute increase in efficiency from 19.3% to 19.7% since other characteristics (Voc, pFF) could be maintained to the same level. In this work, the best performing cell with the ELA process reached an outstanding 20.0% energy conversion efficiency with Jsc=39.3mA/cm2, Voc=649.8mV, and FF=78.3%

    Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer

    Get PDF
    Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole L-tryptophan biosynthetic operon, whereas in certain closely related actinobacteria, for example, Mycobacterium, the trpF gene is missing. In Mycobacterium, the function of the trpF gene is performed by a dual-substrate (ÎČα)8 phosphoribosyl isomerase (priA gene) also involved in L-histidine (hisA gene) biosynthesis. We investigated the effect of a HGT-acquired TrpF enzyme upon PriA’s substrate specificity in Corynebacterium through comparative genomics and phylogenetic reconstructions. After comprehensive in vivo and enzyme kinetic analyses of selected PriA homologs, a novel (ÎČα)8 isomerase subfamily with a specialized function in L-histidine biosynthesis, termed subHisA, was confirmed. X-ray crystallography was used to reveal active-site mutations in subHisA important for narrowing of substrate specificity, which when mutated to the naturally occurring amino acid in PriA led to gain of function. Moreover, in silico molecular dynamic analyses demonstrated that the narrowing of substrate specificity of subHisA is concomitant with loss of ancestral protein conformational states. Our results show the importance of HGT in shaping enzyme evolution and metabolism

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus

    Get PDF
    Background and Aims: The aim of this study was to determine whether expression of hepatitis C virus proteins alters hepatic morphology or function in the absence of inflammation. Methods: Transgenic C57BL/6 mice with liver-specific expression of RNA encoding the complete viral polyprotein (FL-N transgene) or viral structural proteins (S-N transgene) were compared with nontransgenic littermates for altered liver morphology and function. Results: FL-N transcripts were detectable only by reverse-transcription polymerase chain reaction, and S-N transcripts were identified in Northern blots. The abundance of viral proteins was sufficient for detection only in S-N transgenic animals. There was no inflammation in transgenic livers, but mice expressing either transgene developed age-related hepatic steatosis that was more severe in males. Apoptotic or proliferating hepatocytes were not significantly increased. Hepatocellular adenoma or carcinoma developed in older male animals expressing either transgene, but their incidence reached statistical significance only in FL-N animals. Neither was ever observed in age-matched nontransgenic mice. Conclusions: Constitutive expression of viral proteins leads to common pathologic features of hepatitis C in the absence of specific anti-viral immune responses. Expression of the structural proteins enhances a low background of steatosis in C57BL/6 mice, while additional low level expression of nonstructural proteins increases the risk of cancer

    EDGAR: A software framework for the comparative analysis of prokaryotic genomes

    Get PDF
    Blom J, Albaum S, Doppmeier D, et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics. 2009;10(1): 154.Background:The introduction of next generation sequencing approaches has caused a rapid increase in the number of completely sequenced genomes. As one result of this development, it is now feasible to analyze large groups of related genomes in a comparative approach. A main task in comparative genomics is the identification of orthologous genes in different genomes and the classification of genes as core genes or singletons. Results: To support these studies EDGAR – ''Efficient Database framework for comparative Genome Analyses using BLAST score Ratios'' – was developed. EDGAR is designed to automatically perform genome comparisons in a high throughput approach. Comparative analyses for 582 genomes across 75 genus groups taken from the NCBI genomes database were conducted with the software and the results were integrated into an underlying database. To demonstrate a specific application case, we analyzed ten genomes of the bacterial genus Xanthomonas, for which phylogenetic studies were awkward due to divergent taxonomic systems. The resultant phylogeny EDGAR provided was consistent with outcomes from traditional approaches performed recently and moreover, it was possible to root each strain with unprecedented accuracy. Conclusion: EDGAR provides novel analysis features and significantly simplifies the comparative analysis of related genomes. The software supports a quick survey of evolutionary relationships and simplifies the process of obtaining new biological insights into the differential gene content of kindred genomes. Visualization features, like synteny plots or Venn diagrams, are offered to the scientific community through a web-based and therefore platform independent user interface http://edgar.cebitec.uni-bielefeld.de webcite, where the precomputed data sets can be browsed

    Repetitive Elements May Comprise Over Two-Thirds of the Human Genome

    Get PDF
    Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo “clouds”). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%–69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∌25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed “element-specific” P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ∌100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed

    The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long terminal repeats (LTR) from endogenous retroviruses (ERV) are source of binding sites for transcription factors which affect the host regulatory networks in different cell types, including pluripotent cells. The embryonic epiblast is made of pluripotent cells that are subjected to opposite transcriptional regulatory networks to give rise to distinct embryonic and extraembryonic lineages. To assess the transcriptional contribution of ERV to early developmental processes, we have characterized <it>in vitro </it>and <it>in vivo </it>the regulation of ENS-1, a host adopted and developmentally regulated ERV that is expressed in chick embryonic stem cells.</p> <p>Results</p> <p>We show that <it>Ens-1 </it>LTR activity is controlled by two transcriptional pathways that drive pluripotent cells to alternative developmental fates. Indeed, both Nanog that maintains pluripotency and Gata4 that induces differentiation toward extraembryonic endoderm independently activate the LTR. Ets coactivators are required to support Gata factors' activity thus preventing inappropriate activation before epigenetic silencing occurs during differentiation. Consistent with their expression patterns during chick embryonic development, Gata4, Nanog and Ets1 are recruited on the LTR in embryonic stem cells; in the epiblast the complementary expression of Nanog and Gata/Ets correlates with the <it>Ens-1 </it>gene expression pattern; and Ens-1 transcripts are also detected in the hypoblast, an extraembryonic tissue expressing Gata4 and Ets2, but not Nanog. Accordingly, over expression of Gata4 in embryos induces an ectopic expression of <it>Ens-1</it>.</p> <p>Conclusion</p> <p>Our results show that <it>Ens-1 </it>LTR have co-opted conditions required for the emergence of extraembryonic tissues from pluripotent epiblasts cells. By providing pluripotent cells with intact binding sites for Gata, Nanog, or both, <it>Ens-1 </it>LTR may promote distinct transcriptional networks in embryonic stem cells subpopulations and prime the separation between embryonic and extraembryonic fates.</p

    Hepatitis C virus to hepatocellular carcinoma

    Get PDF
    Hepatitis C virus causes acute and chronic hepatitis and can lead to permanent liver damage and hepatocellular carcinoma (HCC) in a significant number of patients via oxidative stress, insulin resistance (IR), fibrosis, liver cirrhosis and HCV induced steatosis. HCV induced steatosis and oxidative stress causes steato-hepatitis and these pathways lead to liver injury or HCC in chronic HCV infection. Steatosis and oxidative stress crosstalk play an important role in liver damage in HCV infection. This Review illustrates viral and host factors which induce Oxidative stress, steatosis and leads toward HCC. It also expresses Molecular cascade which leads oxidative stress and steatosis to HCC
    • 

    corecore