1,131 research outputs found
Mutator Dynamics on a Smooth Evolutionary Landscape
We investigate a model of evolutionary dynamics on a smooth landscape which
features a ``mutator'' allele whose effect is to increase the mutation rate. We
show that the expected proportion of mutators far from equilibrium, when the
fitness is steadily increasing in time, is governed solely by the transition
rates into and out of the mutator state. This results is a much faster rate of
fitness increase than would be the case without the mutator allele. Near the
fitness equilibrium, however, the mutators are severely suppressed, due to the
detrimental effects of a large mutation rate near the fitness maximum. We
discuss the results of a recent experiment on natural selection of E. coli in
the light of our model.Comment: 4 pages, 3 figure
Evolutionary instability of Zero Determinant strategies demonstrates that winning isn't everything
Zero Determinant (ZD) strategies are a new class of probabilistic and
conditional strategies that are able to unilaterally set the expected payoff of
an opponent in iterated plays of the Prisoner's Dilemma irrespective of the
opponent's strategy, or else to set the ratio between a ZD player's and their
opponent's expected payoff. Here we show that while ZD strategies are weakly
dominant, they are not evolutionarily stable and will instead evolve into less
coercive strategies. We show that ZD strategies with an informational advantage
over other players that allows them to recognize other ZD strategies can be
evolutionarily stable (and able to exploit other players). However, such an
advantage is bound to be short-lived as opposing strategies evolve to
counteract the recognition.Comment: 14 pages, 4 figures. Change in title (again!) to comply with Nature
Communications requirements. To appear in Nature Communication
Live to cheat another day: bacterial dormancy facilitates the social exploitation of beta-lactamases
The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours
Coevolution Drives the Emergence of Complex Traits and Promotes Evolvability
The evolution of complex organismal traits is obvious as a historical fact, but the underlying causes—including the role of natural selection—are contested. Gould argued that a random walk from a necessarily simple beginning would produce the appearance of increasing complexity over time. Others contend that selection, including coevolutionary arms races, can systematically push organisms toward more complex traits. Methodological challenges have largely precluded experimental tests of these hypotheses. Using the Avida platform for digital evolution, we show that coevolution of hosts and parasites greatly increases organismal complexity relative to that otherwise achieved. As parasites evolve to counter the rise of resistant hosts, parasite populations retain a genetic record of past coevolutionary states. As a consequence, hosts differentially escape by performing progressively more complex functions. We show that coevolution's unique feedback between host and parasite frequencies is a key process in the evolution of complexity. Strikingly, the hosts evolve genomes that are also more phenotypically evolvable, similar to the phenomenon of contingency loci observed in bacterial pathogens. Because coevolution is ubiquitous in nature, our results support a general model whereby antagonistic interactions and natural selection together favor both increased complexity and evolvability
Evolution Equation of Phenotype Distribution: General Formulation and Application to Error Catastrophe
An equation describing the evolution of phenotypic distribution is derived
using methods developed in statistical physics. The equation is solved by using
the singular perturbation method, and assuming that the number of bases in the
genetic sequence is large. Applying the equation to the mutation-selection
model by Eigen provides the critical mutation rate for the error catastrophe.
Phenotypic fluctuation of clones (individuals sharing the same gene) is
introduced into this evolution equation. With this formalism, it is found that
the critical mutation rate is sometimes increased by the phenotypic
fluctuations, i.e., noise can enhance robustness of a fitted state to mutation.
Our formalism is systematic and general, while approximations to derive more
tractable evolution equations are also discussed.Comment: 22 pages, 2 figure
Evolutionary trajectories in rugged fitness landscapes
We consider the evolutionary trajectories traced out by an infinite
population undergoing mutation-selection dynamics in static, uncorrelated
random fitness landscapes. Starting from the population that consists of a
single genotype, the most populated genotype \textit{jumps} from a local
fitness maximum to another and eventually reaches the global maximum. We use a
strong selection limit, which reduces the dynamics beyond the first time step
to the competition between independent mutant subpopulations, to study the
dynamics of this model and of a simpler one-dimensional model which ignores the
geometry of the sequence space. We find that the fit genotypes that appear
along a trajectory are a subset of suitably defined fitness \textit{records},
and exploit several results from the record theory for non-identically
distributed random variables. The genotypes that contribute to the trajectory
are those records that are not \textit{bypassed} by superior records arising
further away from the initial population. Several conjectures concerning the
statistics of bypassing are extracted from numerical simulations. In
particular, for the one-dimensional model, we propose a simple relation between
the bypassing probability and the dynamic exponent which describes the scaling
of the typical evolution time with genome size. The latter can be determined
exactly in terms of the extremal properties of the fitness distribution.Comment: Figures in color; minor revisions in tex
Knowledge politics and new converging technologies: a social epistemological perspective
The “new converging technologies” refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or “NBIC”. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of “enhancing evolution”
Evolutionary Ecology of Prokaryotic Immune Mechanisms.
Published onlineJournal ArticleReviewBacteria have a range of distinct immune strategies that provide protection against bacteriophage (phage) infections. While much has been learned about the mechanism of action of these defense strategies, it is less clear why such diversity in defense strategies has evolved. In this review, we discuss the short- and long-term costs and benefits of the different resistance strategies and, hence, the ecological conditions that are likely to favor the different strategies alone and in combination. Finally, we discuss some of the broader consequences, beyond resistance to phage and other genetic elements, resulting from the operation of different immune strategies.S.V.H. received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 660039. We also acknowledge the NERC, the BBSRC, the Royal Society, the Leverhulme Trust, the Wellcome Trust, and the AXA research fund for funding
Sociobiological Control of Plasmid copy number
Background:
All known mechanisms and genes responsible for the regulation of plasmid replication lie with the plasmid rather than the chromosome. It is possible therefore that there can be copy-up mutants. Copy-up mutants will have within host selective advantage. This would eventually result into instability of bacteria-plasmid association. In spite of this possibility low copy number plasmids appear to exist stably in host populations. We examined this paradox using a computer simulation model.

Model:
Our multilevel selection model assumes a wild type with tightly regulated replication to ensure low copy number. A mutant with slightly relaxed replication regulation can act as a “cheater” or “selfish” plasmid and can enjoy a greater within-host-fitness. However the host of a cheater plasmid has to pay a greater cost. As a result, in host level competition, host cell with low copy number plasmid has a greater fitness. Furthermore, another mutant that has lost the genes required for conjugation was introduced in the model. The non-conjugal mutant was assumed to undergo conjugal transfer in the presence of another conjugal plasmid in the host cell.

Results:
The simulatons showed that if the cost of carrying a plasmid was low, the copy-up mutant could drive the wild type to extinction or very low frequencies. Consequently, another mutant with a higher copy number could invade the first invader. This process could result into an increasing copy number. However above a certain copy number within-host selection was overcompensated by host level selection leading to a rock-paper-scissor (RPS) like situation. The RPS situation allowed the coexistence of high and low copy number plasmids. The non-conjugal “hypercheaters” could further arrest the copy numbers to a substantially lower level.

Conclusions:
These sociobiological interactions might explain the stability of copy numbers better than molecular mechanisms of replication regulation alone
Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response
Dramatic rise of mutators has been found to accompany adaptation of bacteria
in response to many kinds of stress. Two views on the evolutionary origin of
this phenomenon emerged: the pleiotropic hypothesis positing that it is a
byproduct of environmental stress or other specific stress response mechanisms
and the second order selection which states that mutators hitchhike to fixation
with unrelated beneficial alleles. Conventional population genetics models
could not fully resolve this controversy because they are based on certain
assumptions about fitness landscape. Here we address this problem using a
microscopic multiscale model, which couples physically realistic molecular
descriptions of proteins and their interactions with population genetics of
carrier organisms without assuming any a priori fitness landscape. We found
that both pleiotropy and second order selection play a crucial role at
different stages of adaptation: the supply of mutators is provided through
destabilization of error correction complexes or fluctuations of production
levels of prototypic mismatch repair proteins (pleiotropic effects), while rise
and fixation of mutators occur when there is a sufficient supply of beneficial
mutations in replication-controlling genes. This general mechanism assures a
robust and reliable adaptation of organisms to unforeseen challenges. This
study highlights physical principles underlying physical biological mechanisms
of stress response and adaptation
- …
