372 research outputs found

    Polyphenolic compounds from Clusiaceae plants modulating angiogenesis and vascular endothelium

    Get PDF
    Polyphenolic compounds have created an increasing interest for their potency about cardiovascular diseases for several years1-2. Nevertheless, most of this research had been focused on polyphenolic compound such as flavanols (e.g. catechine from tea), anthocyanin (e.g. delphinidin from blueberry) and stilbenoides (e.g. resveratrol from grape).The present study was designed to screen the potent effect of polyphenolic compounds isolated from plants belonging to Clusiaceae family on endothelium. A huge number of polyphenols such as xanthones and coumarines have been identified from those species and some of them exhibiting various biological activities such as anti-inflammatory and antioxidant properties3-4. Their effect on endothelium, more particularly on angiogenesis, is not yet well-known. Firstly, we assessed the capacity of six molecules to induce endothelium-dependent relaxation in mice aortic rings involving nitric oxide production. Isocalolongic acid (A1) and 2-deprenylrheediaxanthone (A2) are able to increase NO production on endothelial cells and to induce endothelium-dependant relaxation. Then, we investigated the effects of these compounds on in vitro and ex vivo angiogenesis. We showed that A1 treatment promoted the formation of capillary-like network contrary to A2. Endothelial cell adhesion, migration and proliferation were decreased in presence of A2 whereas endothelial migration and proliferation were improved with A1 treatment. We could explain these results with the capacity of A1 to increase VEGF expression and for A2, to decrease ICAM-1 expression. Thus, the strategy used for the screening allows the detection of active molecules from Clusiaceae family that might be of therapeutic benefit in cardiovascular diseases5

    Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching

    Get PDF
    Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms

    Content in fatty acids and carotenoids in phytoplankton blooms during the seasonal sea ice retreat in Hudson Bay complex, Canada.

    Get PDF
    The Hudson Bay complex (HBC) is home to numerous indigenous communities that traditionally have relied heavily on its marine resources. The nutritional quality and stocks of the entire HBC food web depend in large part on the phytoplankton production of bioactive molecules (long chain polyunsaturated fatty acids and carotenoids) and their transfer through trophic levels. The purpose of this study was thus to determine which molecules were produced during spring phytoplankton blooms, as well as the environmental factors driving this production. We investigated 21 stations in 5 sub-regions of the HBC. At the time of sampling, the sub-regions studied had different environmental settings (e.g., ice cover, nutrients, seawater salinity and temperature) conditioning their bloom stages. Pre- and post-bloom stages were associated with relatively low concentrations of bioactive molecules (either fatty acids or carotenoids). In contrast, the highest concentrations of bioactive molecules (dominated by eicosapentaenoic acid and fucoxanthin) were associated with the diatom bloom that typically occurs at the ice edge when silicates remain available. Interestingly, the large riverine inputs in eastern Hudson Bay led to a change in protist composition (larger contribution of Dinophyceae), resulting in lower while more diverse content of bioactive molecules, whether fatty acids (e.g., aa-linolenic acid) or carotenoids (e.g., peridinin). As greater stratification of the HBC is expected in the future, we suggest that a mixotrophic/heterotrophic flagellate-based food web would become more prevalent, resulting in a smaller supply of bioactive molecules for the food web

    Antiangiogenic Tocotrienol Derivatives from Garcinia amplexicaulis

    Get PDF
    Phytochemical investigation of a dichloromethane extract from Garcinia amplexicaulis stem bark led to the isolation of four new tocotrienols; two known tocotrienols, two triterpenes, and a xanthone were also isolated. Their structures were mainly established using NMR and MS methods. The main compounds isolated, δ-amplexichromanol (1) and γ-amplexichromanol, were evaluated on VEGF-induced angiogenesis using a Matrigel assay. Compounds 1 and 2 inhibited in vitro angiogenesis of VEGF-induced human primary endothelial cells in the low nanomolar range. Their capacity to inhibit VEGF-induced proliferation of endothelial cells partially explained this activity, although δ-amplexichromanol also prevented adhesion and migration processes

    Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana

    Get PDF
    In diatoms, metabolic activity during long dark periods leads to a chlororespiratory electron flow, which is accompanied by the build-up of a proton gradient strong enough to activate the diadinoxanthin (Ddx) de-epoxidation reaction of the Ddx cycle. In the present study, the impact of chlororespiration on non-photochemical quenching (NPQ) of chlorophyll fluorescence and the regulation of the Ddx cycle in the diatom Thalassiosira pseudonana was investigated by manipulation of the redox state of the photosynthetic electron transport chain during darkness. The response of a transfer of T. pseudonana cells from growth light conditions to 60 min darkness was found to depend on oxygen: in its presence there was no significant reduction of the PQ pool and no de-epoxidation of Ddx to diatoxanthin (Dtx). Under anaerobic conditions a high reduction state of the electron transport chain and a slow but steady de-epoxidation of Ddx was observed, which resulted in a significant accumulation of Dtx after 60 min of anaerobiosis. Unexpectedly, this high concentration of Dtx did not induce a correspondingly high NPQ as it would have been observed with Dtx formed under high light conditions. However, the sensitivity of NPQ to Dtx in cells kept under dark anaerobic conditions increased during reoxygenation and far-red (FR) light illumination. The results are discussed with respect to the activation of the de-epoxidation reaction and the formation of NPQ and their dependence on the extent of the proton gradient across the thylakoid membrane

    Paradoxical effects of polyphenolic compounds from Clusiaceae on angiogenesis

    Get PDF
    Clusiaceae plants display high contents of xanthones and coumarins, the effects of which on endothelium, more particularly on angiogenesis, have not been assessed yet. We screened the capacity of six molecules from Clusiaceae – belonging to xanthones, coumarins and acid chromanes classes – to induce endothelium-dependent relaxation on mice aortic rings. Endothelial nitric oxide (NO) production was assessed in endothelial cell line using electron paramagnetic resonance technique. Then, the capacity of these molecules to induce capillary-like structures of endothelial cells was assessed. Cellular processes implicated in angiogenesis (adhesion, migration and proliferation) and Western blot analyses were then investigated. Among the tested molecules, isocalolongic acid (IA) and 2-deprenylrheediaxanthone (DRX) induced an endothelium-dependent relaxation of the aorta associated with an increase of NO production in endothelial cells. Using in vitro and ex vivo angiogenesis assays, it was shown that IA treatment promoted the formation of capillary-like network. In contrast, DRX prevented the ability of vascular endothelial growth factor (VEGF) to increase the formation of capillary-like network. IA increased endothelial cell proliferation while DRX decreased all cellular processes of angiogenesis. Western blot analysis showed that IA increased VEGF expression whereas DRX decreased ICAM-1 expression. Altogether, these data allowed identifying isolated molecules from Clusiaceae that exhibit a potential activity towards the modulation of endothelium-dependent relaxation involving NO release. Interestingly, they also highlighted paradoxical effects of the two compounds on cellular angiogenic processes, IA being pro-angiogenic and DRX anti-angiogenic
    corecore