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Content in fatty acids and carotenoids in
phytoplankton blooms during the seasonal
sea ice retreat in Hudson Bay complex, Canada

Rémi Amiraux1,*, Johann Lavaud1,2, Kasey Cameron-Bergeron1, Lisa C. Matthes1,
Ilka Peeken3, Christopher J. Mundy4, David G. Babb4, and Jean-Eric Tremblay1

The Hudson Bay complex (HBC) is home to numerous indigenous communities that traditionally have relied
heavily on its marine resources. The nutritional quality and stocks of the entire HBC food web depend in
large part on the phytoplankton production of bioactive molecules (long chain polyunsaturated fatty acids
and carotenoids) and their transfer through trophic levels. The purpose of this study was thus to
determine which molecules were produced during spring phytoplankton blooms, as well as the
environmental factors driving this production. We investigated 21 stations in 5 sub-regions of the HBC.
At the time of sampling, the sub-regions studied had different environmental settings (e.g., ice cover,
nutrients, seawater salinity and temperature) conditioning their bloom stages. Pre- and post-bloom stages
were associated with relatively low concentrations of bioactive molecules (either fatty acids or
carotenoids). In contrast, the highest concentrations of bioactive molecules (dominated by
eicosapentaenoic acid and fucoxanthin) were associated with the diatom bloom that typically occurs at
the ice edge when silicates remain available. Interestingly, the large riverine inputs in eastern Hudson Bay
led to a change in protist composition (larger contribution of Dinophyceae), resulting in lower while more
diverse content of bioactive molecules, whether fatty acids (e.g., aa-linolenic acid) or carotenoids
(e.g., peridinin). As greater stratification of the HBC is expected in the future, we suggest that
a mixotrophic/heterotrophic flagellate-based food web would become more prevalent, resulting in
a smaller supply of bioactive molecules for the food web.

Keywords: Hudson Bay complex, Spring phytoplankton bloom, Long chain polyunsaturated fatty acids,
Docosahexaenoic acid, Eicosapentaenoic acid, Carotenoid, Fucoxanthin, Peridinin

1. Introduction
Climate-driven alterations of the marine environment are
fastest and deepest at the periphery of the Arctic Ocean
(Intergovernmental Panel on Climate Change, 2014). These
changes are particularly true of the Hudson Bay complex
(HBC; including Hudson Bay, James Bay, Hudson Strait and
Foxe Basin), a sub-Arctic Canadian inland sea that covers 1.3
million km2. This ecosystem has been identified as one of
the most vulnerable regions to climate change due to its

sensitivity to the simultaneous and concomitant effects of
warming, acidification, reductions in the extent, thickness
and seasonal persistence of sea ice, changes in upper ocean
dynamics and increased freshwater loading from precipita-
tion, rivers and melting sea ice (Gagnon and Gough, 2005;
Tivy et al., 2011; Derksen et al., 2019; Tremblay et al., 2019).
Such disruptions of the HBC ecosystem will have many
consequences on the ecosystem services it provides, includ-
ing provision of food and the maintenance of the biodiver-
sity of habitats and species that sustain this production
(Hoover et al., 2013). Indeed, at the base of the food web,
the production of organic matter by primary producers (e.g.,
ice algae, phytoplankton, benthic algae) is driven by the
availability of light and nutrients and presumably modu-
lated by other factors such as temperature, salinity, pH and
the availability of free carbon dioxide (CO2; Campbell et al.,
2016). Changes in these drivers, particularly due to climate
change, are expected to affect the biodiversity of the pri-
mary producers (Witman et al., 2008; Wassmann et al.,
2011; Vallina et al., 2014), which will influence the quantity
and quality of organic matter available for the maintenance
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of the marine food web (Chassot et al., 2010; Leu et al.,
2011; Campanyà-Llovet et al., 2017; Jin et al., 2020).

Phytoplankton provides a very diverse source of bioac-
tive molecules defining the quality of organic matter avail-
able for consumers. Among these molecules, fatty acids
and pigments play physiological roles that allow cells to
cope with changes in environmental constraints; e.g. lipid
composition of cell membranes can vary according to
environmental factors, and the diversity of light-
harvesting pigments allows efficient photosynthesis at dif-
ferent depths in the water column (Brunet et al., 2011;
Marmillot et al., 2020). Some of these molecules, such as
long-chain polyunsaturated fatty acids (LC-PUFA) and
carotenoid pigments, are produced in substantial amounts
by primary producers and are essential components for
organisms across the entire food web (Hendriks et al.,
2003). Thus, marine animals can either directly accumu-
late LC-PUFA and carotenoids from food or partly modify
them through metabolic mechanisms (Hendriks et al.,
2003; Galasso et al., 2017).

Long chain polyunsaturated fatty acids are fatty acids
of �20 carbons in length and at least two conjugated
double bonds in the cis position. LC-PUFA are divided
into two main groups, omega-3 (o-3) and omega-6
(o-6), which are distinguished by the first double bond
position counted from the methyl end at carbon 3 and 6,
respectively (Schmidt and Dyerberg, 1994; Ruiz-López et
al., 2012). These lipids are essential for the growth and
reproduction of most marine animals, which depend on
the initial synthesis of LC-PUFA primarily by marine pho-
tosynthetic organisms (Nichols, 2003; Søreide et al.,
2010; Leu et al., 2011). Phytoplankton taxa differ in their
LC-PUFA production (Volkman et al., 1989; Napolitano et
al., 1990; Leonardos and Lucas, 2000), allowing for tax-
onomic protist identification from fatty acid profiles. For
instance, C20:5 eicosapentaenoic acid (EPA) is mostly
produced by diatoms, while C22:6 docosahexaenoic acid
(DHA) is associated with dinoflagellates (Søreide et al.,
2008; Poulin et al., 2011; Kelly and Scheibling, 2012). In
terms of human health benefits, EPA, DHA and C18:3 aa-
linolenic acid (ALA) are the most important o-3 family
LC-PUFAs, whereas in the o-6 family, C18:2 linoleic acid
(LA) and C20:3 #-linoleic acid (GLA) are important (Fan
and Chapkin, 1998; Erdinest et al., 2012; Shahidi and
Ambigaipalan, 2018). Among these health benefits, LC-
PUFA is associated with anti-inflammatory processes
(Smith et al., 2011), proper fetal development and
healthy aging (Dunstan et al., 2007), and the prevention
of many diseases (Robertson et al., 2013; Calder, 2014;
Katiyar and Arora, 2020).

Carotenoids are a family of pigmented compounds
that are synthesized by photosynthetic microorganisms
and plants, where they play a vital function in absorbing
light energy for photosynthesis, protecting the photosyn-
thetic apparatus by dissipating the excess light energy,
scavenging free radicals and stabilizing cell membranes
(Solovchenko and Merzlyak, 2008; Egeland, 2016; Huang
et al., 2017). Because of their rapid growth rate and
unique carotenoid profiles, phytoplankton taxa are an
excellent source of particular carotenoids (Egeland,

2016; Huang et al., 2017) that are absent or at trace levels
in higher organisms (bacteria also produce carotenoids
against photooxidative stress and for membrane fluidity;
Shivaji and Prakash, 2010; Coelho et al., 2022). The
uniqueness of the carotenoid profiles of phytoplankton
means that carotenoids allow chemotaxonomic identifi-
cation. For example, diatoms are rich in fucoxanthin
while peridinin is the major carotenoid in dinoflagellates
(Yoon et al., 2002; Xia et al., 2013; Egeland, 2016; Huang
et al., 2017). Also, specific de-epoxidized forms with
strong protective functions can be synthesized in
response to harsh growing conditions such as high light
or low nutrient availability (Alou-Font et al., 2016;
Galindo et al., 2017; Lacour et al., 2020). For instance,
in Arctic diatoms, the xanthophyll carotenoid diadinox-
anthin (DD) is converted to diatoxanthin (DT) in order to
prevent and/or reduce the oxidative stress generated by
excess light exposure (Kauko et al., 2019; Lacour et al.,
2020; Croteau et al., 2021). Because of their health-
benefiting properties for human beings, carotenoids
have been a major focus of research in recent decades
(Yeum et al., 2009; Peng et al., 2011). Indeed carotenoids
(i) are important dietary sources of vitamin A (Paiva and
Russell, 1999; Galasso et al., 2019), (ii) present antioxida-
tive properties (Galasso et al., 2017; Sansone and Brunet,
2020) and (iii) are thought to prevent human diseases
including cardiovascular diseases, cancer and other
chronic diseases (Astorg et al., 1997; Paiva and Russell,
1999; Galasso et al., 2019).

Interestingly, the carotenoids and LC-PUFAs produced
by phytoplankton would act synergistically, providing an
enhanced bioactivity on inflammatory response, and
thus on cardiovascular disease risk prevention (Rao and
Rao, 2007; Micallef and Garg, 2009; D’Orazio et al.,
2012). Hence, any modification in the phytoplankton
productivity of carotenoid and LC-PUFAs could be
expected to impact the bioavailability of these health-
benefiting molecules for the marine food web, directly
affecting humans whose nutrition relies upon these
marine resources (Leu et al., 2010; Leu et al., 2016). The
HBC is home to many indigenous communities (Inuit
and Cree) on or near shore that traditionally have relied
heavily on its marine resources (Kuzyk and Candlish,
2019). However, to the best of our knowledge, no studies
have previously determined the phytoplankton produc-
tion of the bioactive molecules (LC-PUFA and carote-
noids) that define the nutritional quality of the entire
HBC marine food web. Our objectives were to determine
which molecules were produced during the different
phytoplankton bloom stages over the HBC, as well as the
protist communities and environmental factors driving
their production.

2. Materials and methods
2.1. Study area

Hudson Bay is a large, inland sub-Arctic sea that is isolated
from open ocean circulation, and therefore acts as a rela-
tively independent system from the Atlantic and Arctic
Oceans (Stewart and Barber, 2010). Landy et al. (2017)
divided the HBC into seven sub-regions. The present paper
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focuses on four of these sub-regions, i.e. Northwestern
Hudson Bay (NWHB), Eastern Hudson Bay (EHB), Narrows
Strait (Narrows) and Hudson Strait (HS) (Figure 1), as well
as Ungava Bay (UB), which has been intentionally sepa-
rated from its sub-region (Hudson Strait) because of its
ecological and biological significance (Paulic and Rice,
2011). Water masses from the Arctic Ocean enter the HBC
from the Canadian Arctic via Fury and Hecla Strait in
northern Foxe Basin and from Baffin Bay via Hudson Strait
(Hochheim and Barber, 2010). Within the HBC, the mostly
cyclonic water circulation around the bay is eventually
exported through Hudson Strait (Saucier et al., 2004; Ride-
nour et al., 2019). However, the major water input for the
HBC is river discharge with around 760 km3 discharged
per year, more than half of which is discharged in the
southern and eastern parts of the HBC (Déry et al.,
2016). Furthermore, the HBC is covered by a dynamic
seasonal sea ice cover from November through July (Hoch-
heim and Barber, 2014). Due to the dominant northwest-
erly wind direction, sea ice breakup generally starts in the
northwestern and eastern parts of Hudson Bay between
May and June, and progresses toward the southern region
where the last ice typically remains until late July
(Andrews et al., 2018; Kirillov et al., 2020). Variability in
spring ice conditions generates largely different spatial
patterns in primary production between the different HBC
sub-regions (Matthes et al., 2021).

2.2. Field sampling

This study was part of larger multidisciplinary investiga-
tions in the HBC aimed to understand (i) the effect of
climate change on the quality of the Inuit local marine
food – project BriGHT: Bridging Global Change, Inuit
Health and the Transforming Arctic Ocean, as well as (ii)
the contributions of climate change and hydroelectric reg-
ulation to the freshwater–marine coupling – project
BaySys: The Hudson Bay System Study. Samples were col-
lected from July 7 to 12, 2017, as part of the BriGHT
project and from June 1 to July 12, 2018, as part of the
BaySys project onboard the Canadian Coast Guard Ice-
breaker CCGS Amundsen. Water samples were collected
with 12-L Niskin-type bottles mounted on a rosette con-
taining a profiler that measured conductivity, tempera-
ture, and depth (CTD; SBE-911, Sea-Bird Scientific,
Bellevue, WA). The rosette was also equipped with a pho-
tosynthetically active radiation sensor (PAR; scalar radiom-
eter QSP-2300, Biospherical Instruments Inc., San Diego,
CA), while a surface reference (QCR-2200, Biospherical
Instruments Inc., San Diego, CA), measuring incoming sca-
lar PAR, was mounted to the ship’s main mast. Discrete
water samples for nutrients, taxonomy, pigments and
lipids were collected at the surface and the deep chloro-
phyll maximum (DCM) from bottles that were closed on
the upward cast. The water was then pre-filtered using
a 200-mm Nylon mesh net to remove zooplankton. Daily

Figure 1. Map of the study area showing station locations within the Hudson Bay complex sub-regions.
Stations sampled in 2017 and 2018 are indicated by green and orange hexagons, respectively, while their
affiliations to the five sub-regions are outlined and shaded: Narrows Strait (Narrows), Hudson Strait (HS), Ungava
Bay (UB), Eastern Hudson Bay (EHB), and Northwestern Hudson Bay (NWHB).
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fields of sea ice concentration (as % of coverage) derived
from space-borne passive microwave sensors (Parkinson et
al., 1996, Updated yearly) were used to calculate the num-
ber of days between sampling and the time that the site
became ice-free, defined as a concentration below 15%.

2.2.1. Nutrients

Water samples for dissolved inorganic nutrients (silicate,
nitrate, nitrite and phosphate) were collected into acid-
washed 15-ml FalconTM tubes after a filtration through
a 25-mm Whatman GF/F filter inserted onto a filter
holder to remove large particles. Nutrient concentrations
were immediately measured onboard with a continuous-
flow AutoAnalyzer III (Bran and Luebbe) using a routine
colorimetric method adapted from Hansen et al. (1999).
Analytical detection limits were 0.05 and 0.02 mmol L–1

for nitrate and nitrite, respectively, and 0.05 and
0.1 mmol L–1 for phosphate and silicate, respectively. The
N:P ratio is defined here as the molar ratio of dissolved
nitrogen (nitrate þ nitrite) to phosphate.

2.2.2. Protist analysis

A 200-mL subsample for the identification and enumera-
tion of eukaryotic cells >2 mm was preserved in 0.4%
acidic Lugol’s solution (Parsons et al., 1984) and stored
in the dark at 4�C until analysis. Cells were identified to
the lowest possible taxonomic rank using an inverted
microscope Zeiss Axiovert 10, according to Lund et al.
(1958). For each sample, a minimum of 400 cells (accuracy
± 10%) and three transects were counted at magnifica-
tions of 400�. The main taxonomic references used to
identify the eukaryotic cells were Tomas (1997), Bérard-
Therriault et al. (1999) and Throndsen et al. (2007).

2.2.3. Lipid analyses

Samples for lipid analyses were obtained by filtering
approximately 3–5 L of seawater through Whatman GF/
F glass fiber filters pre-combusted for 4 h at 450�C and
stored at –80�C before further treatment at the home
laboratory. An internal standard of 5bb-Cholanic acid
(5.028 mg) was added to each sample prior to extraction.
Samples were saponified (5% KOH; 90�C, 60 min; 4 mL) in
a flask, then acidified with HCl to pH 1 and extracted three
times with 6 mL hexane. The combined hexane extracts
were dried over anhydrous Na2SO4, filtered and concen-
trated to obtain the fatty acid fraction and methylated for
further detection with gas chromatography–mass spec-
trometry (GC-MS). GC–MS analysis of fatty acids was car-
ried out using selected ion monitoring (SIM) mode and an
Agilent 7890A series gas chromatograph (DB5MS fused
silica column; 50 m x 0.25 mm i.d., 0.25-mm film thick-
ness) coupled to an Agilent 5975C mass spectrometric
detector (Amiraux et al., 2020). Quantification of fatty
acids was carried out by comparing mass spectral intensi-
ties of molecular ions to that of the internal standard and
normalizing for volume/mass sampled and differences in
mass spectral fragmentation efficiency (e.g., response fac-
tors of each fatty acids identified with Supelco1 37 Com-
ponent FAME Mix, Supelco).

2.2.4. Pigment analyses

Algal pigments were determined by reverse-phase high-
performance liquid chromatography (HPLC). Onboard,
samples were filtered as rapidly as possible onto 25-mm
Whatman GF/F filters and stored in 2-mL cryovials,
wrapped in tinfoil, then flash-frozen in liquid nitrogen.
Samples were stored at –80�C until analysis at the home
laboratory. At the home laboratory pigments were
extracted following Ras et al. (2008) and Matthes et al.
(2021). Pigments and derivates were identified based on
retention time and the spectral properties of external pig-
ment standards. In this study, total chlorophyll a (TChl a)
corresponds to the sum of Chl a and chlorophyllide a,
total fucoxanthin corresponds to the sum of fucoxanthin,
19’-butanoyl-oxy-fucoxanthin and 19’-hexanoyl-oxy-
fucoxanthin, while other carotenoids correspond to the
sum of antheraxanthin, zeaxanthin and lutein. Further
analyses were performed as in Galindo et al. (2017). Spe-
cifically, the ratio of photoprotective versus photosyn-
thetic carotenoids (PPC: PSC) was calculated as the sum
of PPC pigments (neoxanthin, violaxanthin, DD, allox-
anthin, DT, zeaxanthin, lutein, and carotenes) versus the
sum of PSC pigments (peridinin, 190-butanoyl-oxy-
fucoxanthin, fucoxanthin, 190-hexanoyl-oxy-fucoxanthin,
and prasinoxanthin). The size of the diatom xanthophyll
pool (DDþDT pool) was assessed as the sum of DD and DT
normalized to Tchl a: (DDþ DT)/TChl a. Finally, to address
the photoprotection status of phytoplankton diatoms, the
DD de-epoxidation state of DD to DT was calculated as
DES ¼ (DT/[DD þ DT]) � 100.

2.3. Statistical analysis

As our variables are not parametric, Mann–Whitney–Wil-
coxon tests were performed to identify any significant
differences between 2017 and 2018 in the environmental
parameters such as temperature, salinity, PAR and dis-
solved inorganic nutrients affecting the phytoplankton
biomass in EHB and HS. Mann–Whitney–Wilcoxon tests
were also performed to identify any significant differences
in carotenoid content between surface and DCM at UB
and NWHB. Spearman’s rank order correlation (rs) was
used to infer the strength of associations between protist
classes and total fatty acids (TFA) as well as TChl a. Corre-
lation significance were determined at p-value < 0.01.

To determine if the biological responses such as protist
abundance, fatty acids and pigment content differed sig-
nificantly between the sub-regions and depths studied, we
normalised the data and performed two-way ANOVAs.
Redundancy analysis (RDA; Rao, 1964) was used to iden-
tify the environmental variables (explanatory variables)
influencing carotenoids and LC-PUFA content (response
variables) in the different sub-regions investigated. Corre-
lations between variables were assessed by the Spearman
rank coefficient. When two variables were strongly corre-
lated (rs > 0.8), one was removed from subsequent analy-
ses (Quinn and Keough, 2002). To obtain the model with
the most parsimonious set of variables, a forward stepwise
model selection was performed on the normalized physi-
cochemical and biological variables (Blanchet et al., 2008).
Among them, ice-free days, temperature, salinity, silicate,
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diatoms, dinoflagellates, cryptophytes, choanoflagellates
and prymnesiophytes were selected (dissolved nitrogen
was strongly anti-correlated with dissolved silicate, and
dissolved phosphate was not selected by the forward step-
wise model selection). A permutation-based ANOVA was
used to test the significance of axes and the term selected
by the model. We performed the RDA using the “vegan”
package (Oksanen et al., 2015) in R Core Team (2018).

3. Results
3.1. Environmental characteristics

The environmental parameters affecting the phytoplank-
ton composition, abundance and content of bioactive
molecules at Eastern Hudson Bay and Hudson Strait pre-
sented no significant differences between the 2017 and
2018 campaigns (Mann–Whitney–Wilcoxon, p > 0.05),
allowing their stations from different years to be grouped
together for further analysis.

At the time of sampling, the Narrows Strait sub-region
(Figure 1) was characterized by an intact ice cover (30.0 days
before it became ice-free), the lowest temperature, a high
salinity, the highest concentrations in dissolved nitrogen
compounds (nitrate þ nitrite) and dissolved silicate, as
well as the highest N:P ratio (Table 1). Stations defining
our Hudson Strait sub-regions were close to becoming ice-
free at the time of sampling (4.4 days in advance) and
presented relatively low nutrient concentrations at the
surface compared to DCM. The stations defining Ungava
Bay presented relatively similar high temperature and
salinity conditions to those of Hudson Strait, while
Ungava Bay had been ice-free for a longer period before
sampling (11.3 ice-free days) and presented a more pro-
nounced nutrient surface depletion than Hudson Strait
(Table 1). The Eastern Hudson Bay sub-region was defined
by the longest period of ice-free days prior to sampling
(15.5 days), the lowest salinity and the highest tempera-
ture, as well as low dissolved nitrogen compounds and
high dissolved phosphate concentrations (Table 1).
Finally, the stations defining the Northwestern Hudson
Bay (Figure 1) were mostly ice-free (ice-free for 3.8 days
prior to sampling) and low in dissolved nitrogen com-
pounds, as well as in phosphate (Table 1).

3.2. Protist composition, TChl a and total lipid

content

Although the composition of protists differed significantly
between the regions and depths investigated, their total
abundance did not differ (Figure 2; Table S1). The mean
(± SE) abundance of protists across the different sub-
regions and depths was 1.08 ± 0.12 � 106 cells L–1

(Figure 2). In terms of relative composition, surface and
DCM samples overall were dominated by unclassified fla-
gellates (44.9 and 38.1%, respectively), diatoms (pennate
and centric; 30.3 and 44.4%, respectively), and choanofla-
gellates (10.2 and 6.3%, respectively; Figure 2). TChl a con-
tent differed significantly between sub-regions with
content ranging from 0.3 to 2.8 mg L–1, as well as between
sampling depths, although the latter difference originated
mainly from the HS sub-region (Figure 3A; Table S1). TFA
content did not differ significantly between sampling

depths, while it differed significantly between sub-
regions, with content ranging from 7.6 to 88.6 mg L–1

(Figure 3B; Table S1). Surface diatom abundance did not
correlate with TChl a, while it correlated strongly with TFA
(Spearman’s rs ¼ 0.38, p > 0.05, and rs ¼ 0.75, p < 0.001,
respectively). At the DCM, diatom abundance correlated
strongly with both TChl a and TFA content (Spearman’s rs
> 0.78, p < 0.001).

At the time of sampling, the Narrows sub-region was
defined by a similar protist composition, TChl a and TFA
content at the surface and at the DCM (Figures 2 and 3).
This sub-region was characterized by the highest domi-
nance of unclassified flagellates with approximately 65%
associated with the lowest contents of TChl a and TFA
(mean of 0.4 and 11.0 mg L–1, respectively).

The HS sub-region was characterized by a slight
increase in diatoms and unclassified flagellates with
depth, which was associated with a doubling of Tchl
a from 1.4 to 2.8 mg L–1 (Figures 2 and 3A). However,
TFA contents were not significantly different between
depths, with 54.5 and 64.9 mg L–1 at the surface and DCM,
respectively (Figure 3B).

The UB sub-region was defined by a similar protist com-
position, TChl a and TFA content at the surface and DCM.
This sub-region was defined by the highest dominance of
diatoms of approximately 84%, which was associated with
the highest TFA contents and high TChl a (Figures 2
and 3). TFA content at UB was above 61.4 mg L–1, while
TChl a mean was at 1.9 mg L–1 at both depths.

The EHB sub-region presented a notable difference in
protist composition between the surface and DCM. The
surface layer was dominated at 55.6% by unclassified fla-
gellates, while the DCM was dominated at 70.5% by dia-
toms. The EHB protist composition also showed the highest
contribution of dinoflagellates at 15%, mainly represented
by Heterocapsa rotundata at the surface (Figure 2). TChl
a and TFA contents were not significantly different between
depths, with mean of 2.5 and 30.5 mg L–1, respectively
(Figure 3).

The NWHB sub-region was dominated by unclassified
flagellates and was characterised by the largest contribu-
tion of choanoflagellates. The latter represented 33.2 and
21.6% of the protist community at the surface and DCM,
respectively (Figure 2). TChl a and TFA contents were not
significantly different between depths, with mean of 1.6
and 33.6 mg L–1, respectively (Figure 3).

3.3. Fatty acid content and composition

The lipid profiles of samples from all sub-regions con-
sisted of saturated (SFA), monounsaturated (MUFA) and
polyunsaturated fatty acids (PUFA; Figure 4). Only fatty
acids with a contribution >1% are represented in Figure 4.
SFA were composed of C14:0 myristic acid, C16:0 palmitic
acid and C18:0 stearic acid. MUFA were composed
of C16:1 n-7 palmitoleic acid, C18:1n-9 cis oleic acid and
C18:1n-9 trans elaidic acid. PUFA were composed of C18:2 n-6

linoleic acid (LA), C18:3 n-3 a-linolenic (ALA), C18:3 n-6

g-linolenic acid (GLA), C20:5 n-3 eicosapentaenoic acid (EPA)
and C22:6 n-6 docosahexaenoic acid (DHA). The mean rela-
tive contribution of SFA, MUFA and PUFA was 24.8%,
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40.6% and 34.6%, respectively, and the fatty acid profiles
were dominated by palmitoleic acid, EPA, palmitic acid and
DHA at 29.6, 21.0, 13.3 and 10.5%, respectively.

SFA, MUFA and PUFA differed significantly between sub-
regions but not between depths. However, some of the fatty
acids constituting these lipid classes differed significantly
between sub-regions and depths (Figure 2; Table S1).

The Narrows exhibited the lowest TFA content, which
was associated with the highest SFA contribution at the
detriment of PUFA (Figure 4). HS and UB sub-regions

exhibited the highest TFA content associated with the
highest PUFA contribution and the lowest SFA content
(Figure 4). In EHB, the TFA content exhibited a slightly
higher SFA contribution at the detriment of PUFA com-
pared to what was observed in the other sub-regions
(Figure 4). However, the surface was characterized by the
highest DHA and ALA contribution to the total fatty acids
at 13.2 and 1.7%, respectively, while at the DCM these
PUFA contributed similarly to what was observed in the
other sub-regions. In NWHB, the TFA content exhibited

Figure 2. Protist community composition in the Hudson Bay complex. Microalgal community composition (� 106

cells L–1), determined by microscopic analysis, for the (A) surface and (B) deep chlorophyll maximum (DCM) of the five
Hudson Bay complex sub-regions: Narrows Strait (Narrows), Hudson Strait (HS), Ungava Bay (UB), Eastern Hudson Bay
(EHB), and Northwestern Hudson Bay (NWHB; Figure 1). Error bars indicate standard error.
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a slightly higher MUFA contribution at the detriment of
PUFA than the average contributions for all sub-regions
(Figure 4).

3.4. Pigment content and composition

Many carotenoids and chlorophylls were identified (Figure
S1). Carotenoids included prasinoxanthin, neoxanthin,
peridinin, fucoxanthin, b-carotene, violaxanthin, DD, DT

and alloxanthin, while chlorophylls included chlorophyll
a, b, c, phaeophytin a, phaeophorbide a and chlorophyl-
lide a. The pigment content of samples was dominated by
chlorophyll a, as well as fucoxanthin and its derivatives at
58.5 and 23.9%, respectively (Figure S1). Among carote-
noids, fucoxanthin and derivatives, DDþDT and b-caro-
tene dominated at 86.8, 5.4 and 3.1%, respectively.
Absolute carotenoid concentration at the surface was

Figure 3. Total chlorophyll a and total fatty acids in the Hudson Bay complex. (A) Total chlorophyll a (mg L–1) and
(B) total fatty acids (mg L–1) observed at the surface (white bars) and at the deep chlorophyll maximum (DCM;
gray bars) of the five Hudson Bay complex sub-regions investigated: Narrows Strait (Narrows), Hudson Strait (HS),
Ungava Bay (UB), Eastern Hudson Bay (EHB), and Northwestern Hudson Bay (NWHB; Figure 1). Error bars indicate
standard error.
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almost half the value at the DCM, with 0.51 and 0.89 mg L–1,
respectively.

The Narrows samples showed almost no carotenoids
(Figures 5 and S1). The carotenoid content of HS surface
samples was less than half than at the DCM, while in UB,
surface and DCM carotenoid contents and relative contri-
butions were not significantly different (Mann–Whitney–
Wilcoxon, p > 0.05). EHB differed from other sub-regions
because its surface samples exhibited the highest absolute

concentrations of prasinoxanthin, neoxanthin and peridi-
nin, while the relative contribution of these pigments was
diminished by the strong relative fucoxanthin contribu-
tion at the DCM. Although the surface samples of EHB
had some of the lowest carotenoid contents, the DCM
samples had the highest content (Figure 5). The NWHB
surface and DCM carotenoid contents were not signifi-
cantly different (Mann–Whitney–Wilcoxon, p > 0.05), with
a content almost exclusively comprised of fucoxanthin

Figure 4. Relative fatty acid composition in the Hudson Bay complex. Relative fatty acid composition (% of total
fatty acids) for polyunsaturated (PUFA), monounsaturated (MUFA) and saturated fatty acids (SFA) at the (A) surface
and (B) deep chlorophyll maximum (DCM) of the five Hudson Bay complex sub-regions investigated: Narrows Strait
(Narrows), Hudson Strait (HS), Ungava Bay (UB), Eastern Hudson Bay (EHB), and Northwestern Hudson Bay (NWHB;
Figure 1). Error bars indicate standard error.
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(approximately 97% of carotenoids, 0.75 mg L–1; Figures 5
and S1).

As expected from the large differences in underwater
PAR levels (Table 1), the PPC: PSC ratio was higher at
surface than at DCM, independent of the sub-regions con-
sidered (Figure 6). While PAR was relatively steady at
DCM, it showed marked differences at surface with high-
est values in the EHB and NWHB sub-regions as compared
to the Narrows, HS and UB sub-regions. When focusing on

the photoprotective pigments specific to diatoms: DD and
DT (Figure S2), a similar surface versus DCM pattern was
observed, i.e. the DDþDT pool size, as well as the DES,
were higher at surface than at DCM. Independent of
depth, Hudson Bay stations (EHB) and stations outside
of Hudson Bay (HS) showed the same DDþDT pool size.
This similarity was in relative contrast to surface PPC: PSC
ratios, which were higher in EHB waters, suggesting the
significant presence of non-diatom photoprotective

Figure 5. Relative carotenoid and chlorophyll concentrations in the Hudson Bay complex. Relative carotenoid
and chlorophyll composition (% of total pigments) at the (A) surface and (B) deep chlorophyll maximum (DCM) of the
five Hudson Bay complex sub-regions investigated: Narrows Strait (Narrows), Hudson Strait (HS), Ungava Bay (UB),
Eastern Hudson Bay (EHB), and Northwestern Hudson Bay (NWHB; Figure 1). Error bars indicate standard error.
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pigments.While DES at the DCM was similar for both sub-
regions, it was double in HS waters (i.e., 20.3 versus
11.9%) due to the highest concentration of DT.

3.5. Environmental drivers of fatty acid

and carotenoid contents

The RDA model explained 46% (r2adj.¼ 0.47) of the total
multivariate fatty acid and carotenoid variation (Figure 7).
Diatoms, high numbers of ice-free days and low dissolved
silicate concentrations were associated with most LC-PUFA
(EPA, DHA, GLA, LA) and carotenoids (fucoxanthin and
derivatives, b-carotene, DDþDT; Figure 7). Stations with
these conditions were located mainly in the UB and HS
sub-regions, while the stations with the opposite condi-
tions (i.e., choanoflagellates, high dissolved silicate and
low numbers of ice-free days) belong to the NHWB and
Narrows sub-regions. Dinoflagellates, high temperature
and low salinity were associated with minor LC-PUFA
(ALA) and carotenoids (peridinin, violaxanthin, neox-
anthin, prasinoxanthin, alloxanthin and other carote-
noids). The stations with these conditions were located
mainly in the EHB sub-region.

4. Discussion
In spring, the changes in environmental factors such as
light, sea ice cover, temperature and salinity control the
phenology of the protist communities, their bloom stages
and, consequently, the water content of bioactive mole-
cules (Lee and Whitledge, 2005; Leu et al., 2006; Popova
et al., 2010; Coupel et al., 2015; Tremblay et al., 2015;
Ardyna et al., 2020). The different sub-regions investigated
in this study presented contrasting environmental condi-
tions that favoured different stages of the spring

phytoplankton bloom: pre-bloom (Narrows), surface
bloom (HS), deepening bloom (UB) and post-bloom
(NWHB; Figure 8). Pre-bloom stage was characterized by
a protist community dominated by flagellates. This com-
munity biosynthesizes low contents of LC-PUFA and car-
otenoids and, consequently, the content of bioactive
molecules was low (Figure 9). During the surface bloom
and subsequent deepening, the environmental conditions
favoured a diatom-dominated protist community. Diatoms
are known to be a productive source of the main LC-PUFA
and carotenoids (Viso and Marty, 1993; Kelly and Schei-
bling, 2012; Kuczynska et al., 2015), which supports the
high content of these bioactive molecules observed during
their bloom. Post-bloom stage is characterized by a domi-
nance of flagellates, including a strong contribution of
choanoflagellates. The latter biosynthesize low quantities
of LC-PUFA and carotenoids, and the contents observed in
bioactive molecules at this stage of bloom most likely
derived from the less abundant diatoms.We conclude that
the availability of bioactive molecules, LC-PUFA and car-
otenoids, in the HBC originates mainly from diatoms,
especially when they dominate the protist community
during the phytoplankton bloom (Figures 2 and 9). Our
study also described a bloom-deepening scenario due to
riverine inputs (EHB area). This scenario showed a different
protist community than the purely marine scenario, with
a particularly high abundance of mesohaline dinoflagel-
lates (Heterocapsa rotundata). This scenario showed a spe-
cific, albeit low, bioactive molecule content, with LC-PUFA
and carotenoids that differed from those reported for the
other bloom stages (Figure 9). As both diatom- and
dinoflagellate-dominated blooms are typical features of
marine and brackish waters, respectively (Ardyna et al.,

Figure 6. Photoprotective to photosynthetic carotenoids (PPC: PSC) in the Hudson Bay complex. PPC: PSC ratio
at the surface (white bars) and deep chlorophyll maximum (DCM; gray bars) of the five sub-regions investigated in the
Hudson Bay complex: Narrows Strait (Narrows), Hudson Strait (HS), Ungava Bay (UB), Eastern Hudson Bay (EHB), and
Northwestern Hudson Bay (NWHB; Figure 1). Error bars indicate standard error.
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2017; Krause et al., 2019), the scenarios we observed in
this study may represent the general phenology in most of
the Arctic and sub-Arctic regions.

4.1. Spring phytoplankton bloom scenarios in the

HBC and associated bioactive molecules

The pre-bloom scenario observed at Narrows was distin-
guished from the others mainly by the presence of sea
ice, higher nutrient concentrations, lower TChl a and
total fatty acid content, and a strong dominance of
unclassified flagellates (Figures 8 and 9). The low carot-
enoid and LC-PUFA contents are explained in our RDA
model by typical pre-bloom physico-chemical conditions,
i.e. a high seawater dissolved silicate concentration and
an intact sea ice cover (Figure 7). Diatoms are the dom-
inant contributors to Arctic Ocean spring blooms (Wass-
mann et al., 1999; Vaquer-Sunyer et al., 2013; Krause et
al., 2018), and their productivity depends on the avail-
ability of dissolved silicate which they use to build their
silica shells (Krause et al., 2018). Moreover, diatoms are
the main producers of the major LC-PUFA EPA, as well as
of the major carotenoids fucoxanthin, DD and DT (Viso
and Marty, 1993; Kelly and Scheibling, 2012; Kuczynska
et al., 2015). Thus, the pre-blooming scenario, which is

characterized by the lowest presence of diatoms, results
in the lowest content of LC-PUFA and carotenoids
(Figure 9).

The surface bloom scenario observed at HS was char-
acterized by a recent disappearance of sea ice, high nutri-
ent availability throughout the water column and high
algal biomass and fatty acid content that was associated
with a co-dominance of diatoms and unclassified flagel-
lates. Of this scenario, the deepening bloom scenario
observed at UB was distinguished by a longer ice-free
period, the disappearance of surface nutrients as well as
an increased lipid content that was associated with
a strong dominance of diatoms. In our RDA model
(Figure 7), the particularly high contents of LC-PUFA and
carotenoids during the surface bloom and its deepening
were explained by the dissolved silicate draw-down asso-
ciated with open water conditions, indicating a diatom-
dominated marginal ice zone bloom. Consequently, we
observed the highest contents in diatom-related LC-
PUFA EPA and the carotenoids fucoxanthin, DD and DT,
although other molecules less specific to diatoms and in
lower abundance were also present, and possibly synthe-
sized in part by flagellates, i.e. DHA, GLA, LA and b-caro-
tene (Figures 4, 5, 7, S1, and S2). Our hypothesis is that

Figure 7. Redundancy analysis of environmental variables best explaining variation in bioactive molecules at
the study sites. Plot of the redundancy analysis (RDA) models. By selecting (forward stepwise model selection) ice-
free days, temperature, salinity, dissolved silicate, diatoms, choanoflagellates, dinoflagellates, cryptophytes, and
prymnesiophytes as variables, the RDA model explained 46% (r2adj.¼ 0.47) of the total multivariate fatty acid and
carotenoid variation. Color-coded sub-regions investigated in the Hudson Bay complex are: Narrows Strait (Narrows),
Hudson Strait (HS), Ungava Bay (UB), Eastern Hudson Bay (EHB), and Northwestern Hudson Bay (NWHB; Figure 1).
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Figure 8. Schematic summarizing the major environmental characteristics that conditioned blooming stages
in the Hudson Bay complex. Environmental characteristics (date, ice condition, salinity, temperature and nutrient)
that conditioned the different bloom stages in the five sub-regions investigated in the Hudson Bay complex: Narrows
Strait (Narrows), Hudson Strait (HS), Ungava Bay (UB), Eastern Hudson Bay (EHB), and Northwestern Hudson Bay
(NWHB; Figure 1).

Figure 9. Schematic summarizing the phenology and bioactive molecule content of protists during the
blooming stages. Long-chain polyunsaturated fatty acid (LC-PUFA) and carotenoid (Car) content during the five
bloom stages observed in the Hudson Bay complex: pre-bloom, surface bloom, deepening bloom, deepening bloom
under freshwater inflows, and post-bloom. The gradient in this content is depicted from absent (Ø) to low (þ),
moderately low (þþ), moderately high (þþþ) and high (þþþþ) content.
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diatoms are so productive during the surface and deepen-
ing bloom that their production of minor LC-PUFA is
greater than that of genera that produce them in signifi-
cant quantities (Dunstan et al., 1994). Therefore, we sug-
gest that LC-PUFA and carotenoids are mostly provided by
diatoms during the spring bloom. Interestingly, Leu et al.
(2006) showed in High Arctic fjord waters that during the
surface bloom scenario, well before the maximum algal
biomass, the maximum contribution of LC-PUFA to total
fatty acids was reached and accounted for approximately
45%. In the present paper, the maximum contribution of
LC-PUFA to total fatty acids of approximately 42% was
observed in the deepening bloom scenario, although it
had probably reached a biomass peak, as evidenced by the
high TChl a content associated with a lack of nutrients
(Table 1, Figure 3A).

The riverine input-forcing bloom-deepening scenario
observed in EHB differed from the UB deepening bloom
scenario mostly by its surface layer content. In EHB, the
very low salinity and warm temperatures at surface
(26.29 and 4.75

�
C, respectively) favoured the dominance

of unclassified flagellates (Figures 8 and 9). In our RDA
model (Figure 7), the surface low salinity and warm
temperatures coincide with the highest content in peri-
dinin, violaxanthin, neoxanthin, prasinoxanthin and
alloxanthin carotenoids, which is explained by the higher
protist diversity. For instance, peridinin and alloxanthin
are respectively synthesized by dinoflagellates and cryp-
tophytes (Johansen et al., 1974; Thomson et al., 2004;
Šupraha et al., 2014), which were the most abundant
carotenoids in this scenario compared to the others.
Interestingly, our RDA model also highlights that the
riverine input-forcing bloom-deepening scenario
enhances the content of ALA LC-PUFA in surface waters.
EHB DCM waters presented the typical characteristic of
a deepening diatom-dominated bloom, namely a strong
content of LC-PUFA and carotenoids, as observed in HS
(Figures 8 and 9).

The post-bloom scenario observed in NWHB was char-
acterized by strong nutrient depletion throughout the
water column, suggesting that the bloom-deepening sce-
nario had already occurred. A further sign of stressful
growth conditions at surface was the highest PPC: PSC
ratio observed (Figure 6; Matthes et al., 2021). The post-
bloom scenario showed low carotenoid and LC-PUFA
water contents that were explained in our RDA model
by high seawater dissolved silicate and a strong contribu-
tion of choanoflagellates to the protist community (Fig-
ure 7). The lack of nutrients (except silicate) and the
dominance of choanoflagellates indicate a food web
functioning based on the microbial loop, which is
characteristic for the post-bloom stage (McKenzie et
al., 1997; Thaler and Lovejoy, 2015). As choanofla-
gellates are unpigmented (Brunet et al., 2019), the
observed carotenoid pattern (high fucoxanthin) likely
originated from the non-dominant diatoms (see our
hypothesis above). Similarly, the LC-PUFA EPA contents
also likely originated from diatoms, even if non-
dominant (Figures 8 and 9).

4.2. Potential impact of climate warming on the

production of bioactive molecules in the HBC

In this study, we focused on the HBC because it is one of
the Arctic regions most affected by global warming in
terms of increasing temperatures and freshwater supplies.
Such changes in environmental conditions are expected to
alter the production of bioactive molecules by microalgae
at the basis of the food web, and thus modify the dynam-
ics of the marine ecosystem on which the indigenous
communities living on its shores depend.

As a consequence of global warming, primary production
increased by 57% between 1998 and 2018 in the Arctic
Ocean (Lewis et al., 2020). Although an increase in light,
due to the melting of snow and ice cover, is generally con-
sidered to be the main driver of phytoplankton production,
over the last decade the increase in phytoplankton biomass
may instead have been supported by an influx of new nutri-
ents. The HBC upper water column is vertically stable peren-
nially mainly due to buoyancy forces associated with
freshwater inputs from numerous large rivers and the sea-
sonal ice melt cycle (Prinsenberg, 1986). This haline stratifi-
cation restricts upward nutrient flux to the surface layer
(Ingram and Prinsenberg, 1998). Although the future contri-
bution of wind patterns to vertical mixing remains uncer-
tain, one of the expected consequences of global warming in
the HBC is stronger water column stratification. These con-
ditions should benefit small protist cells, as they are more
efficient in acquiring nutrients and less susceptible to grav-
itational sedimentation than larger and/or heavy cells, such
as diatoms (Li et al., 2009). As a consequence, stronger prev-
alence of a flagellate-based food web in the HBC, at the
detriment of a diatom-based food web, is expected (Li et
al., 2009; Lalande et al., 2013; Nöthig et al., 2015). The
decrease in the contribution of diatoms to the protist com-
munity should thus lead to a reduction in the availability of
the main bioactive molecules they produce, i.e. EPA LC-PUFA
and fucoxanthin, DD and DT carotenoids.

In coastal regions influenced by rivers, climate warming
is expected to result in increasing riverine inflows. These
features should reinforce the already established stratifica-
tion, but more importantly increase nutrient availability
(Terhaar et al., 2021). The magnitude of protist blooms that
develop in these transition zones, and that we observed in
the riverine input-forcing scenario, should increase. A
future increase in the availability of minor bioactive mole-
cules in coastal HBC areas, such as ALA LC-PUFA and peri-
dinin, violaxanthin, neoxanthin, prasinoxanthin and
alloxanthin carotenoids, is therefore expected. In addition
to an expected shift from high- to low-producing protist
communities, higher temperatures are expected to alter LC-
PUFA biosynthesis. Protists adapt to changing temperatures
by modifying the structure of their membranes, a process
known as homeoviscous adaptation (Sinensky, 1974; Winter
and Dzwolak, 2005; D’Amico et al., 2006). This process
involves the remodeling of membrane lipids by modifying
fatty acid chain length and unsaturation to maintain the
desired level of fluidity of cell membranes (Guschina and
Harwood, 2006). The double bonds in LC-PUFA enhance
the ability of fatty acids to ‘bend’, which increases flexibility
and leads to increased membrane fluidity in cold
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environments. In turn, protists reduce membrane LC-PUFA
content in response to increasing temperatures in order to
maintain cell membrane structural rigidity in a less ordered
environment (Rousch et al., 2003; Fuschino et al., 2011). An
increase in water temperature by 2.5�C has been estimated
to lead to a LC-PUFA synthesis reduction by 8.2% for EPA
and 27.8% for DHA (Hixson and Arts, 2016). In addition to
rising temperatures, other environmental conditions
related to climate change, such as ocean acidification
(Duncan et al., 2022) and changes in light intensity (Piepho
et al., 2012), may also affect LC-PUFA availability and to
a larger extent the nutritional value of phytoplankton.
Decreased sea ice thickness, less snow cover, an earlier ice
breakup and the reinforcement of stratification result in
higher ambient irradiances during spring phytoplankton
blooms (Strom and Fredrickson, 2008; Nicolaus et al.,
2012). Although higher light availability may boost the
annual marine primary production, some studies have
highlighted a lower LC-PUFA biosynthesis due to light
stress (Leu et al., 2010; Leu et al., 2016).

5. Conclusions
At the time of sampling, the HBC sub-regions studied
were in different bloom stages that reflected the
physico-chemical characteristics of their waters. Pre- and
post-bloom stages were associated with a dominance of
flagellates that presented low contents of bioactive mole-
cules, while the surface and deepening bloom stages were
associated with a dominance of diatoms, efficient produ-
cers of major LC-PUFA and carotenoid pigments. The high-
est concentrations of bioactive molecules were associated
with the diatom bloom and/or dominance. These observa-
tions further confirm the crucial importance of diatoms in
determining the nutritional quality of the food web within
the HBC and the Arctic Ocean. However, climate change
threatens the future availability of these bioactive mole-
cules because of the concomitant expected decreasing
dominance of diatoms in Arctic marine primary produc-
tion, increasing light and temperature, and other climate
change impacts such as ocean acidification. Consequently,
a potentially profound alteration of the food web func-
tioning and, more broadly, of the dynamics of the Arctic
marine ecosystem is to be expected.

Our study also identified the effects of riverine inputs,
which are increasing with global warming, on the produc-
tion of phytoplankton bioactive molecules. The riverine
inputs observed in the EHB sub-region and identified by
the low surface salinities led to a diversification of the
protist community with a strong presence of the mesoha-
line dinoflagellates Heterocapsa rotundata. This peculiar
protist community presented a relatively low yet diverse
content of bioactive molecules, with the highest contribu-
tion of DHA and peridinin. The expected future increase in
freshwater inputs into the HBC and more broadly the
Arctic basins, will most likely lead to an increase in the
availability of minor bioactive molecules. However, this
‘new’ production is not expected to counterbalance the
possibly dramatic losses of diatom-sourced bioactive
molecules, both in terms of quantity and usefulness for
food web and ecosystem productivity and functioning.
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Möller, A. 2013. Impact of a warm anomaly on
export fluxes of biogenic matter in the eastern Fram
Strait. Progress in Oceanography 109: 70–77. DOI:
http://dx.doi.org/10.1016/j.pocean.2012.09.006.

Landy, JC, Ehn, JK, Babb, DG, Thériault, N, Barber, DG.
2017. Sea ice thickness in the Eastern Canadian Arc-
tic: Hudson Bay Complex & Baffin Bay. Remote Sens-
ing of Environment 200: 281–294. DOI: http://dx.
doi.org/10.1016/j.rse.2017.08.019.

Lee, SH,Whitledge, TE. 2005. Primary and new produc-
tion in the deep Canada Basin during summer 2002.
Polar Biology 28(3): 190–197. DOI: http://dx.doi.org/
10.1007/s00300-004-0676-3.

Leonardos, N, Lucas, IA. 2000. The nutritional value of
algae grown under different culture conditions for
Mytilus edulis L. larvae. Aquaculture 182(3–4):

301–315. DOI: http://dx.doi.org/10.1016/S0044-
8486(99)00269-0.

Leu, E, Falk-Petersen, S, Kwaśniewski, S, Wulff, A,
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